A homotopy orbit spectrum for profinite groups
Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 367-400.

Voir la notice de l'article provenant de la source International Press of Boston

For a profinite group $G$, we define an $S[[G]]$-module to be a certain type of $G$-spectrum $X$ built from an inverse system ${\lbrace X_i \rbrace}_i$ of $G$-spectra, with each $X_i$ naturally a $G/N_i$-spectrum, where $N_i$ is an open normal subgroup and $G \cong \lim_i G/N_i$. We define the homotopy orbit spectrum $X_{hG}$ and its homotopy orbit spectral sequence. We give results about when its $E_2$-term satisfies $E^{p,q}_2 \cong \lim_i H_p (G / N_i , \pi_q (X_i))$. Our main result is that this occurs if ${\lbrace \pi_\ast (X_i) \rbrace}_i$ degreewise consists of compact Hausdorff abelian groups and continuous homomorphisms, with each $G/N_i$ acting continuously on $\pi_q (X_i)$ for all $q$. If $\pi_q (X_i)$ is additionally always profinite, then the $E_2$-term is the continuous homology of $G$ with coefficients in the graded profinite $\widehat{\mathbb{Z}} [[G]]$ module $\pi_\ast (X)$. Other results include theorems about Eilenberg–Mac Lane spectra and about when homotopy orbits preserve weak equivalences.
DOI : 10.4310/HHA.2024.v26.n1.a21
Classification : 55P42, 55P91, 55T25
Keywords: homotopy orbit spectrum, profinite group, continuous group homology
@article{HHA_2024_26_1_a20,
     author = {Daniel G. Davis and Vojislav Petrovi\'c},
     title = {A homotopy orbit spectrum for profinite groups},
     journal = {Homology, homotopy, and applications},
     pages = {367--400},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n1.a21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a21/}
}
TY  - JOUR
AU  - Daniel G. Davis
AU  - Vojislav Petrović
TI  - A homotopy orbit spectrum for profinite groups
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 367
EP  - 400
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a21/
DO  - 10.4310/HHA.2024.v26.n1.a21
LA  - en
ID  - HHA_2024_26_1_a20
ER  - 
%0 Journal Article
%A Daniel G. Davis
%A Vojislav Petrović
%T A homotopy orbit spectrum for profinite groups
%J Homology, homotopy, and applications
%D 2024
%P 367-400
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a21/
%R 10.4310/HHA.2024.v26.n1.a21
%G en
%F HHA_2024_26_1_a20
Daniel G. Davis; Vojislav Petrović. A homotopy orbit spectrum for profinite groups. Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 367-400. doi : 10.4310/HHA.2024.v26.n1.a21. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a21/

Cité par Sources :