A cohomological bundle theory for sheaf cohomology
Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 341-366.

Voir la notice de l'article provenant de la source International Press of Boston

We develop a bundle theory of presheaves on small categories, based on similar work by Brent Everitt and Paul Turner. For a certain set of presheaves on posets, we produce a Leray–Serre type spectral sequence that gives a reduction property for the cohomology of the presheaf. This extends the usual cohomological reduction of posets with a unique maximum.
DOI : 10.4310/HHA.2024.v26.n1.a20
Classification : 05E45, 55N30, 55T05
Keywords: sheaf cohomology, spectral sequence, bundle of presheaves
@article{HHA_2024_26_1_a19,
     author = {Mihail Hurmuzov},
     title = {A cohomological bundle theory for sheaf cohomology},
     journal = {Homology, homotopy, and applications},
     pages = {341--366},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n1.a20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a20/}
}
TY  - JOUR
AU  - Mihail Hurmuzov
TI  - A cohomological bundle theory for sheaf cohomology
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 341
EP  - 366
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a20/
DO  - 10.4310/HHA.2024.v26.n1.a20
LA  - en
ID  - HHA_2024_26_1_a19
ER  - 
%0 Journal Article
%A Mihail Hurmuzov
%T A cohomological bundle theory for sheaf cohomology
%J Homology, homotopy, and applications
%D 2024
%P 341-366
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a20/
%R 10.4310/HHA.2024.v26.n1.a20
%G en
%F HHA_2024_26_1_a19
Mihail Hurmuzov. A cohomological bundle theory for sheaf cohomology. Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 341-366. doi : 10.4310/HHA.2024.v26.n1.a20. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a20/

Cité par Sources :