Independence complexes of $(n \times 6)$-grid graphs
Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 15-27.

Voir la notice de l'article provenant de la source International Press of Boston

We determine the homotopy types of the independence complexes of the $(n \times 6)$-square grid graphs. In fact, we show that these complexes are homotopy equivalent to wedges of spheres.
DOI : 10.4310/HHA.2024.v26.n1.a2
Classification : 05C69, 55P10
Keywords: independence complex, square grid graph
@article{HHA_2024_26_1_a1,
     author = {Takahiro Matsushita and Shun Wakatsuki},
     title = {Independence complexes of $(n \times 6)$-grid graphs},
     journal = {Homology, homotopy, and applications},
     pages = {15--27},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n1.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a2/}
}
TY  - JOUR
AU  - Takahiro Matsushita
AU  - Shun Wakatsuki
TI  - Independence complexes of $(n \times 6)$-grid graphs
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 15
EP  - 27
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a2/
DO  - 10.4310/HHA.2024.v26.n1.a2
LA  - en
ID  - HHA_2024_26_1_a1
ER  - 
%0 Journal Article
%A Takahiro Matsushita
%A Shun Wakatsuki
%T Independence complexes of $(n \times 6)$-grid graphs
%J Homology, homotopy, and applications
%D 2024
%P 15-27
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a2/
%R 10.4310/HHA.2024.v26.n1.a2
%G en
%F HHA_2024_26_1_a1
Takahiro Matsushita; Shun Wakatsuki. Independence complexes of $(n \times 6)$-grid graphs. Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 15-27. doi : 10.4310/HHA.2024.v26.n1.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a2/

Cité par Sources :