The stable embedding tower and operadic structures on configuration spaces
Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 229-258.

Voir la notice de l'article provenant de la source International Press of Boston

$\def\EmbMN{\operatorname{Emb}(M,N)}\def\EM{E_M}\def\En{E_n}$ Given smooth manifolds $M$ and $N$, manifold calculus studies the space of embeddings $\EmbMN$ via the “embedding tower”, which is constructed using the homotopy theory of presheaves on $M$. The same theory allows us to study the stable homotopy type of $\EmbMN$ via the “stable embedding tower”. By analyzing cubes of framed configuration spaces, we prove that the layers of the stable embedding tower are tangential homotopy invariants of $N$. If $M$ is framed, the moduli space of disks $\EM$ is intimately connected to both the stable and unstable embedding towers through the $\En$ operad. The action of $\En$ on $\EM$ induces an action of the Poisson operad poisn on the homology of configuration spaces $H_\ast (F(M,-))$. In order to study this action, we introduce the notion of Poincaré–Koszul operads and modules and show that $\En$ and $\EM$ are examples. As an application, we compute the induced action of the Lie operad on $H_\ast (F(M,-))$ and show it is a homotopy invariant of $M^+$.
DOI : 10.4310/HHA.2024.v26.n1.a15
Classification : 55M05
Keywords: configuration space, Koszul duality, functor calculus
@article{HHA_2024_26_1_a14,
     author = {Connor Malin},
     title = {The stable embedding tower and operadic structures on configuration spaces},
     journal = {Homology, homotopy, and applications},
     pages = {229--258},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n1.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a15/}
}
TY  - JOUR
AU  - Connor Malin
TI  - The stable embedding tower and operadic structures on configuration spaces
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 229
EP  - 258
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a15/
DO  - 10.4310/HHA.2024.v26.n1.a15
LA  - en
ID  - HHA_2024_26_1_a14
ER  - 
%0 Journal Article
%A Connor Malin
%T The stable embedding tower and operadic structures on configuration spaces
%J Homology, homotopy, and applications
%D 2024
%P 229-258
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a15/
%R 10.4310/HHA.2024.v26.n1.a15
%G en
%F HHA_2024_26_1_a14
Connor Malin. The stable embedding tower and operadic structures on configuration spaces. Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 229-258. doi : 10.4310/HHA.2024.v26.n1.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a15/

Cité par Sources :