The homotopy class of twisted $L_\infty$-morphisms
Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 201-227.

Voir la notice de l'article provenant de la source International Press of Boston

The global formality of Dolgushev depends on the choice of a torsion-free covariant derivative. We prove that the globalized formalities with respect to two different covariant derivatives are homotopic. More explicitly, we derive the statement by proving a more general homotopy equivalence between $L_\infty$-morphisms that are twisted with gauge equivalent Maurer–Cartan elements.
DOI : 10.4310/HHA.2024.v26.n1.a14
Classification : 16W60, 17B55, 53D55
Keywords: homotopy Lie algebra, deformation quantization
@article{HHA_2024_26_1_a13,
     author = {Andreas Kraft and Jonas Schnitzer},
     title = {The homotopy class of twisted $L_\infty$-morphisms},
     journal = {Homology, homotopy, and applications},
     pages = {201--227},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n1.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a14/}
}
TY  - JOUR
AU  - Andreas Kraft
AU  - Jonas Schnitzer
TI  - The homotopy class of twisted $L_\infty$-morphisms
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 201
EP  - 227
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a14/
DO  - 10.4310/HHA.2024.v26.n1.a14
LA  - en
ID  - HHA_2024_26_1_a13
ER  - 
%0 Journal Article
%A Andreas Kraft
%A Jonas Schnitzer
%T The homotopy class of twisted $L_\infty$-morphisms
%J Homology, homotopy, and applications
%D 2024
%P 201-227
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a14/
%R 10.4310/HHA.2024.v26.n1.a14
%G en
%F HHA_2024_26_1_a13
Andreas Kraft; Jonas Schnitzer. The homotopy class of twisted $L_\infty$-morphisms. Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 201-227. doi : 10.4310/HHA.2024.v26.n1.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a14/

Cité par Sources :