A degree theorem for the simplicial closure of Auter Space
Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 189-199.

Voir la notice de l'article provenant de la source International Press of Boston

The degree of a based graph is the number of essential non-basepoint vertices after generic perturbation. Hatcher–Vogtmann’s degree theorem states that the subcomplex of Auter Space of graphs of degree at most $d$ is $(d-1)$-connected. We extend the definition of degree to the simplicial closure of Auter Space and prove a version of Hatcher–Vogtmann’s result in this context.
DOI : 10.4310/HHA.2024.v26.n1.a13
Classification : 20F28, 55U10
Keywords: homology, homotopy
@article{HHA_2024_26_1_a12,
     author = {Juliet Aygun and Jeremy Miller},
     title = {A degree theorem for the simplicial closure of {Auter} {Space}},
     journal = {Homology, homotopy, and applications},
     pages = {189--199},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n1.a13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a13/}
}
TY  - JOUR
AU  - Juliet Aygun
AU  - Jeremy Miller
TI  - A degree theorem for the simplicial closure of Auter Space
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 189
EP  - 199
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a13/
DO  - 10.4310/HHA.2024.v26.n1.a13
LA  - en
ID  - HHA_2024_26_1_a12
ER  - 
%0 Journal Article
%A Juliet Aygun
%A Jeremy Miller
%T A degree theorem for the simplicial closure of Auter Space
%J Homology, homotopy, and applications
%D 2024
%P 189-199
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a13/
%R 10.4310/HHA.2024.v26.n1.a13
%G en
%F HHA_2024_26_1_a12
Juliet Aygun; Jeremy Miller. A degree theorem for the simplicial closure of Auter Space. Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 189-199. doi : 10.4310/HHA.2024.v26.n1.a13. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a13/

Cité par Sources :