Compact Lie groups and complex reductive groups
Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 177-188.

Voir la notice de l'article provenant de la source International Press of Boston

We show that the categories of compact Lie groups and complex reductive groups (not necessarily connected) are homotopy equivalent topological categories. In other words, the corresponding categories enriched in the homotopy category of topological spaces are equivalent. This can also be interpreted as an equivalence of infinity categories.
DOI : 10.4310/HHA.2024.v26.n1.a12
Classification : 18D20, 22E46
Keywords: compact Lie group, reductive group, Tannaka formalism, infinity category
@article{HHA_2024_26_1_a11,
     author = {John Jones and Dmitriy Rumynin and Adam Thomas},
     title = {Compact {Lie} groups and complex reductive groups},
     journal = {Homology, homotopy, and applications},
     pages = {177--188},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n1.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a12/}
}
TY  - JOUR
AU  - John Jones
AU  - Dmitriy Rumynin
AU  - Adam Thomas
TI  - Compact Lie groups and complex reductive groups
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 177
EP  - 188
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a12/
DO  - 10.4310/HHA.2024.v26.n1.a12
LA  - en
ID  - HHA_2024_26_1_a11
ER  - 
%0 Journal Article
%A John Jones
%A Dmitriy Rumynin
%A Adam Thomas
%T Compact Lie groups and complex reductive groups
%J Homology, homotopy, and applications
%D 2024
%P 177-188
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a12/
%R 10.4310/HHA.2024.v26.n1.a12
%G en
%F HHA_2024_26_1_a11
John Jones; Dmitriy Rumynin; Adam Thomas. Compact Lie groups and complex reductive groups. Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 177-188. doi : 10.4310/HHA.2024.v26.n1.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a12/

Cité par Sources :