When Bousfield localizations and homotopy idempotent functors meet again
Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 187-218.

Voir la notice de l'article provenant de la source International Press of Boston

We generalize Bousfield–Friedlander’s Theorem and Hirschhorn’s Localization Theorem to settings where the hypotheses are not satisfied at the expense of obtaining semi-model categories instead of model categories. We use such results to answer, in the world of semi-model categories, an open problem posed by May–Ponto about the existence of Bousfield localizations for Hurewicz and mixed type model structures (on spaces and chain complexes). We also provide new applications that were not available before, e.g. stabilization of non-cofibrantly generated model structures or applications to mathematical physics.
DOI : 10.4310/HHA.2023.v25.n2.a9
Classification : 18G30, 18G55, 55U35
Keywords: Bousfield localization, idempotent functor, model category, Hurewicz and mixed model structures, stable model category, homological algebra
@article{HHA_2023_25_2_a8,
     author = {Victor Carmona},
     title = {When {Bousfield} localizations and homotopy idempotent functors meet again},
     journal = {Homology, homotopy, and applications},
     pages = {187--218},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n2.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a9/}
}
TY  - JOUR
AU  - Victor Carmona
TI  - When Bousfield localizations and homotopy idempotent functors meet again
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 187
EP  - 218
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a9/
DO  - 10.4310/HHA.2023.v25.n2.a9
LA  - en
ID  - HHA_2023_25_2_a8
ER  - 
%0 Journal Article
%A Victor Carmona
%T When Bousfield localizations and homotopy idempotent functors meet again
%J Homology, homotopy, and applications
%D 2023
%P 187-218
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a9/
%R 10.4310/HHA.2023.v25.n2.a9
%G en
%F HHA_2023_25_2_a8
Victor Carmona. When Bousfield localizations and homotopy idempotent functors meet again. Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 187-218. doi : 10.4310/HHA.2023.v25.n2.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a9/

Cité par Sources :