Homology transfer products on free loop spaces: orientation reversal on spheres
Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 129-158.

Voir la notice de l'article provenant de la source International Press of Boston

We consider the space $\Lambda M := H^1 (S^1, M)$ of loops of Sobolev class $H^1$ of a compact smooth manifold $M$, the so-called free loop space of $M$. We take quotients $\Lambda M / G$ where $G$ is a finite subgroup of $O(2)$ acting by linear reparametrization of $S^1$. We use the existence of transfer maps $\operatorname{tr} : H_\ast (\Lambda M / G) \to H_\ast (\Lambda M)$ to define a homology product on $\Lambda M / G$ via the Chas–Sullivan loop product. We call this product $P_G$ the transfer product. The involution $\vartheta : \Lambda M \to \Lambda M$ which reverses orientation, $\vartheta ( \gamma (t) := \gamma (1-t)$, is of particular interest to us. We compute $H_\ast (\Lambda S^n / \vartheta ; \mathbb{Q}), n \gt 2$, and the product\[P_\vartheta : H_i (\Lambda S^n / \vartheta ; \mathbb{Q}) \times H_j (\Lambda S^n / \vartheta ; \mathbb{Q)} \to H_{i+j-n} (\Lambda Sn/\vartheta ; \mathbb{Q})\]associated to orientation reversal. Rationally P\vartheta can be realized “geometrically” using the concatenation of equivalence classes of loops. There is a qualitative difference between the homology of $\Lambda S^n / \vartheta$ and the homology of $\Lambda S^n / G$ when $G \subset S^1 \subset O(2)$ does not “contain” the orientation reversal. This might be interesting with respect to possible differences in the number of closed geodesics between non-reversible and reversible Finsler metrics on $S^n$, the latter might always be infinite.
DOI : 10.4310/HHA.2023.v25.n2.a7
Classification : 55P50, 55R12, 58E05
Keywords: loop space homology, transfer for a finite group action, homotopy
@article{HHA_2023_25_2_a6,
     author = {Philippe Kupper},
     title = {Homology transfer products on free loop spaces: orientation reversal on spheres},
     journal = {Homology, homotopy, and applications},
     pages = {129--158},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n2.a7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a7/}
}
TY  - JOUR
AU  - Philippe Kupper
TI  - Homology transfer products on free loop spaces: orientation reversal on spheres
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 129
EP  - 158
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a7/
DO  - 10.4310/HHA.2023.v25.n2.a7
LA  - en
ID  - HHA_2023_25_2_a6
ER  - 
%0 Journal Article
%A Philippe Kupper
%T Homology transfer products on free loop spaces: orientation reversal on spheres
%J Homology, homotopy, and applications
%D 2023
%P 129-158
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a7/
%R 10.4310/HHA.2023.v25.n2.a7
%G en
%F HHA_2023_25_2_a6
Philippe Kupper. Homology transfer products on free loop spaces: orientation reversal on spheres. Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 129-158. doi : 10.4310/HHA.2023.v25.n2.a7. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a7/

Cité par Sources :