The homotopy-invariance of constructible sheaves
Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 97-128.

Voir la notice de l'article provenant de la source International Press of Boston

In this paper we show that the functor sending a stratified topological space $S$ to the $\infty$-category of constructible (hyper)sheaves on $S$ with coefficients in a large class of presentable $\infty$-categories is homotopy-invariant. To do this, we first establish a number of results for locally constant (hyper)sheaves. For example, if $X$ is a locally weakly contractible topological space and $\mathcal{E}$ is a presentable $\infty$-category, then we give a concrete formula for the constant hypersheaf functor $\mathcal{E} \to \mathrm{Sh}^\mathrm{hyp} (X; \mathcal{E})$, implying that the constant hypersheaf functor is a right adjoint, and is fully faithful if $X$ is also weakly contractible. It also lets us prove a general monodromy equivalence and categorical Künneth formula for locally constant hypersheaves.
DOI : 10.4310/HHA.2023.v25.n2.a6
Classification : 32S60, 55N05, 55N30, 55P55
Keywords: locally constant sheaf, constructible sheaf, hypersheaf, homotopy-invariance
@article{HHA_2023_25_2_a5,
     author = {Peter J. Haine and Mauro Porta and Jean-Baptiste Teyssier},
     title = {The homotopy-invariance of constructible sheaves},
     journal = {Homology, homotopy, and applications},
     pages = {97--128},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n2.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a6/}
}
TY  - JOUR
AU  - Peter J. Haine
AU  - Mauro Porta
AU  - Jean-Baptiste Teyssier
TI  - The homotopy-invariance of constructible sheaves
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 97
EP  - 128
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a6/
DO  - 10.4310/HHA.2023.v25.n2.a6
LA  - en
ID  - HHA_2023_25_2_a5
ER  - 
%0 Journal Article
%A Peter J. Haine
%A Mauro Porta
%A Jean-Baptiste Teyssier
%T The homotopy-invariance of constructible sheaves
%J Homology, homotopy, and applications
%D 2023
%P 97-128
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a6/
%R 10.4310/HHA.2023.v25.n2.a6
%G en
%F HHA_2023_25_2_a5
Peter J. Haine; Mauro Porta; Jean-Baptiste Teyssier. The homotopy-invariance of constructible sheaves. Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 97-128. doi : 10.4310/HHA.2023.v25.n2.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a6/

Cité par Sources :