The homotopy solvability of compact Lie groups and homogenous topological spaces
Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 75-95.

Voir la notice de l'article provenant de la source International Press of Boston

$\def\F{\mathbb{F}} \def\O{\mathbb{O}} \def\R{\mathbb{R}} \def\C{\mathbb{C}} \def\H{\mathbb{H}}$We analyse the homotopy solvability of the classical Lie groups $O(n)$, $U(n)$, $Sp(n)$ and derive its heredity by closed subgroups. In particular, the homotopy solvability of compact Lie groups is shown. Then, we study the homotopy solvability of the loop spaces $\Omega (G_{n,m} (\F))$, $\Omega (V_{n,m} (\F))$ and $\Omega (F_{n; n_1,\dotsc,n_k}(\F))$ for Grassmann $G_{n,m} (\F)$, Stiefel $V_{n,m} (\F)$ and generalised flag $F_{n; n_1,\dotsc,n_k}(\F)$ manifolds for $\F = \R, \C$, the field of reals or complex numbers and $\H$, the skew $\R$-algebra of quaternions. Furthermore, the homotopy solvability of the loop space $\Omega (\O P^2)$ for the Cayley plane $\O P^2$ is established as well.
DOI : 10.4310/HHA.2023.v25.n2.a5
Classification : 55P15, 14M17, 22C05, 55P45, 55R35
Keywords: Cayley plane, Grassmann (generalised flag and Stiefel) manifold, $H$-space, localization, $n$-fold commutator map, nilpotent space, nilpotency (solvability) class, loop space, Postnikov system, Samelson product, smash product, suspension space, wedge sum, Whitehead product
@article{HHA_2023_25_2_a4,
     author = {Marek Golasi\'nski},
     title = {The homotopy solvability of compact {Lie} groups and homogenous topological spaces},
     journal = {Homology, homotopy, and applications},
     pages = {75--95},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n2.a5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a5/}
}
TY  - JOUR
AU  - Marek Golasiński
TI  - The homotopy solvability of compact Lie groups and homogenous topological spaces
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 75
EP  - 95
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a5/
DO  - 10.4310/HHA.2023.v25.n2.a5
LA  - en
ID  - HHA_2023_25_2_a4
ER  - 
%0 Journal Article
%A Marek Golasiński
%T The homotopy solvability of compact Lie groups and homogenous topological spaces
%J Homology, homotopy, and applications
%D 2023
%P 75-95
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a5/
%R 10.4310/HHA.2023.v25.n2.a5
%G en
%F HHA_2023_25_2_a4
Marek Golasiński. The homotopy solvability of compact Lie groups and homogenous topological spaces. Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 75-95. doi : 10.4310/HHA.2023.v25.n2.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a5/

Cité par Sources :