Haefliger’s approach for spherical knots modulo immersions
Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 55-73.

Voir la notice de l'article provenant de la source International Press of Boston

$\def\Emb{\overline{Emb}}$We show that for the spaces of spherical embeddings modulo immersions $\Emb (S^n, S^{n+q})$ and long embeddings modulo immersions $\Emb_\partial (D^n, D^{n+q})$, the set of connected components is isomorphic to $\pi_{n+1} (SG, SG_q)$ for $q \geqslant 3$. As a consequence, we show that all the terms of the long exact sequence of the triad $(SG; SO, SG_q)$ have a geometric meaning relating to spherical embeddings and immersions.
DOI : 10.4310/HHA.2023.v25.n2.a4
Classification : 57R40, 57R42, 58D10
Keywords: embeddings modulo immersions, spherical embedding, framed disked embedding
@article{HHA_2023_25_2_a3,
     author = {Neeti Gauniyal},
     title = {Haefliger{\textquoteright}s approach for spherical knots modulo immersions},
     journal = {Homology, homotopy, and applications},
     pages = {55--73},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n2.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a4/}
}
TY  - JOUR
AU  - Neeti Gauniyal
TI  - Haefliger’s approach for spherical knots modulo immersions
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 55
EP  - 73
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a4/
DO  - 10.4310/HHA.2023.v25.n2.a4
LA  - en
ID  - HHA_2023_25_2_a3
ER  - 
%0 Journal Article
%A Neeti Gauniyal
%T Haefliger’s approach for spherical knots modulo immersions
%J Homology, homotopy, and applications
%D 2023
%P 55-73
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a4/
%R 10.4310/HHA.2023.v25.n2.a4
%G en
%F HHA_2023_25_2_a3
Neeti Gauniyal. Haefliger’s approach for spherical knots modulo immersions. Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 55-73. doi : 10.4310/HHA.2023.v25.n2.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a4/

Cité par Sources :