Self-closeness numbers of non-simply-connected spaces
Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 21-36.

Voir la notice de l'article provenant de la source International Press of Boston

The self-closeness number of a connected CW complex is the least integer $n$ such that any of its self-maps inducing an isomorphism in $\pi_\ast$ for $\ast \leqslant n$ is a homotopy equivalence. We prove that under a mild condition, the self-closeness number of a non-simply-connected finite complex coincides with that of its universal cover whenever the universal cover is a finite $\mathrm{H}_0$-space or a finite co-$\mathrm{H}_0$-space. We give several interesting examples to which the result applies.
DOI : 10.4310/HHA.2023.v25.n2.a2
Classification : 55P10, 55S37
Keywords: self-closeness number, group of self-equivalences, $\mathrm{H}_0$-space, co-$\mathrm{H}_0$-space, $p$-universal space
@article{HHA_2023_25_2_a1,
     author = {Yichen Tong},
     title = {Self-closeness numbers of non-simply-connected spaces},
     journal = {Homology, homotopy, and applications},
     pages = {21--36},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n2.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a2/}
}
TY  - JOUR
AU  - Yichen Tong
TI  - Self-closeness numbers of non-simply-connected spaces
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 21
EP  - 36
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a2/
DO  - 10.4310/HHA.2023.v25.n2.a2
LA  - en
ID  - HHA_2023_25_2_a1
ER  - 
%0 Journal Article
%A Yichen Tong
%T Self-closeness numbers of non-simply-connected spaces
%J Homology, homotopy, and applications
%D 2023
%P 21-36
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a2/
%R 10.4310/HHA.2023.v25.n2.a2
%G en
%F HHA_2023_25_2_a1
Yichen Tong. Self-closeness numbers of non-simply-connected spaces. Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 21-36. doi : 10.4310/HHA.2023.v25.n2.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a2/

Cité par Sources :