$K$-theory of real Grassmann manifolds
Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 383-402.

Voir la notice de l'article provenant de la source International Press of Boston

Let $G_{n,k}$ denote the real Grassmann manifold of $k$-dimensional vector subspaces of $\mathbb{R}^n$. We compute the complex $K$-ring of $G_{n,k}\:$, up to a small indeterminacy, for all values of $n,k$ where $2 \leqslant k \leqslant n - 2$. When $n \equiv 0 (\operatorname{mod} 4), k \equiv 1 (\operatorname{mod} 2)$, we use the Hodgkin spectral sequence to determine the $K$-ring completely.
DOI : 10.4310/HHA.2023.v25.n2.a17
Classification : 19L99, 55N15
Keywords: real Grassmann manifold, $K$-theory, Hodgkin spectral sequence
@article{HHA_2023_25_2_a16,
     author = {Sudeep Podder and Parameswaran Sankaran},
     title = {$K$-theory of real {Grassmann} manifolds},
     journal = {Homology, homotopy, and applications},
     pages = {383--402},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n2.a17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a17/}
}
TY  - JOUR
AU  - Sudeep Podder
AU  - Parameswaran Sankaran
TI  - $K$-theory of real Grassmann manifolds
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 383
EP  - 402
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a17/
DO  - 10.4310/HHA.2023.v25.n2.a17
LA  - en
ID  - HHA_2023_25_2_a16
ER  - 
%0 Journal Article
%A Sudeep Podder
%A Parameswaran Sankaran
%T $K$-theory of real Grassmann manifolds
%J Homology, homotopy, and applications
%D 2023
%P 383-402
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a17/
%R 10.4310/HHA.2023.v25.n2.a17
%G en
%F HHA_2023_25_2_a16
Sudeep Podder; Parameswaran Sankaran. $K$-theory of real Grassmann manifolds. Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 383-402. doi : 10.4310/HHA.2023.v25.n2.a17. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a17/

Cité par Sources :