The structuring effect of a Gottlieb element on the Sullivan model of a space
Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 275-296.

Voir la notice de l'article provenant de la source International Press of Boston

We show a Gottlieb element in the rational homotopy of a simply connected space $X$ implies a structural result for the Sullivan minimal model, with different results depending on parity. In the even-degree case, we prove a rational Gottlieb element is a terminal homotopy element. This fact allows us to complete an argument of Dupont to prove an even-degree Gottlieb element gives a free factor in the rational cohomology of a formal space of finite type. We apply the odd-degree result to affirm a special case of the $2N$-conjecture on Gottlieb elements of a finite complex. We combine our results to make a contribution to the realization problem for the classifying space $\operatorname{\mathit{B}aut}_1 (X)$. We prove a simply connected space $X$ satisfying $\operatorname{\mathit{B}aut}_1 (X_\mathbb{Q}) \simeq S^{2n}_\mathbb{Q}$ must have infinite-dimensional rational homotopy and vanishing rational Gottlieb elements above degree $2n-1$ for $n=1,2,3$.
DOI : 10.4310/HHA.2023.v25.n2.a12
Classification : 55P62, 55R35, 55R15
Keywords: Gottlieb element, Sullivan minimal model, classifying space for a fibration, derivation
@article{HHA_2023_25_2_a11,
     author = {Gregory Lupton and Samuel Bruce Smith},
     title = {The structuring effect of a {Gottlieb} element on the {Sullivan} model of a space},
     journal = {Homology, homotopy, and applications},
     pages = {275--296},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n2.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a12/}
}
TY  - JOUR
AU  - Gregory Lupton
AU  - Samuel Bruce Smith
TI  - The structuring effect of a Gottlieb element on the Sullivan model of a space
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 275
EP  - 296
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a12/
DO  - 10.4310/HHA.2023.v25.n2.a12
LA  - en
ID  - HHA_2023_25_2_a11
ER  - 
%0 Journal Article
%A Gregory Lupton
%A Samuel Bruce Smith
%T The structuring effect of a Gottlieb element on the Sullivan model of a space
%J Homology, homotopy, and applications
%D 2023
%P 275-296
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a12/
%R 10.4310/HHA.2023.v25.n2.a12
%G en
%F HHA_2023_25_2_a11
Gregory Lupton; Samuel Bruce Smith. The structuring effect of a Gottlieb element on the Sullivan model of a space. Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 275-296. doi : 10.4310/HHA.2023.v25.n2.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a12/

Cité par Sources :