On bialgebras, comodules, descent data and Thom spectra in $\infty$-categories
Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 219-242.

Voir la notice de l'article provenant de la source International Press of Boston

This paper establishes several results for coalgebraic structure in $\infty$-categories, specifically with connections to the spectral noncommutative geometry of cobordism theories. We prove that the categories of comodules and modules over a bialgebra always admit suitably structured monoidal structures in which the tensor product is taken in the ambient category (as opposed to a relative (co)tensor product over the underlying algebra or coalgebra of the bialgebra). We give two examples of higher coalgebraic structure: first, following Hess we show that for a map of $\mathbb{E}_n$-ring spectra $\varphi : A \to B$, the associated $\infty$-category of descent data is equivalent to the $\infty$-category of comodules over $B \otimes_A B$, the so-called descent coring; secondly, we show that Thom spectra are canonically equipped with a highly structured comodule structure which is equivalent to the $\infty$-categorical Thom diagonal of Ando, Blumberg, Gepner, Hopkins and Rezk (which we describe explicitly) and that this highly structured diagonal decomposes the Thom isomorphism for an oriented Thom spectrum in the expected way indicating that Thom spectra are good examples of spectral noncommutative torsors.
DOI : 10.4310/HHA.2023.v25.n2.a10
Classification : 16T10, 18F20, 55N22, 55P43
Keywords: Thom spectrum, infinity category, coalgebra, bialgebra
@article{HHA_2023_25_2_a9,
     author = {Jonathan Beardsley},
     title = {On bialgebras, comodules, descent data and {Thom} spectra in $\infty$-categories},
     journal = {Homology, homotopy, and applications},
     pages = {219--242},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n2.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a10/}
}
TY  - JOUR
AU  - Jonathan Beardsley
TI  - On bialgebras, comodules, descent data and Thom spectra in $\infty$-categories
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 219
EP  - 242
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a10/
DO  - 10.4310/HHA.2023.v25.n2.a10
LA  - en
ID  - HHA_2023_25_2_a9
ER  - 
%0 Journal Article
%A Jonathan Beardsley
%T On bialgebras, comodules, descent data and Thom spectra in $\infty$-categories
%J Homology, homotopy, and applications
%D 2023
%P 219-242
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a10/
%R 10.4310/HHA.2023.v25.n2.a10
%G en
%F HHA_2023_25_2_a9
Jonathan Beardsley. On bialgebras, comodules, descent data and Thom spectra in $\infty$-categories. Homology, homotopy, and applications, Tome 25 (2023) no. 2, pp. 219-242. doi : 10.4310/HHA.2023.v25.n2.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n2.a10/

Cité par Sources :