Voir la notice de l'article provenant de la source International Press of Boston
@article{HHA_2023_25_1_a8, author = {Michael K. Brown and Tasos Moulinos}, title = {On the topological $K$-theory of twisted equivariant perfect complexes}, journal = {Homology, homotopy, and applications}, pages = {173--187}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2023}, doi = {10.4310/HHA.2023.v25.n1.a9}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a9/} }
TY - JOUR AU - Michael K. Brown AU - Tasos Moulinos TI - On the topological $K$-theory of twisted equivariant perfect complexes JO - Homology, homotopy, and applications PY - 2023 SP - 173 EP - 187 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a9/ DO - 10.4310/HHA.2023.v25.n1.a9 LA - en ID - HHA_2023_25_1_a8 ER -
%0 Journal Article %A Michael K. Brown %A Tasos Moulinos %T On the topological $K$-theory of twisted equivariant perfect complexes %J Homology, homotopy, and applications %D 2023 %P 173-187 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a9/ %R 10.4310/HHA.2023.v25.n1.a9 %G en %F HHA_2023_25_1_a8
Michael K. Brown; Tasos Moulinos. On the topological $K$-theory of twisted equivariant perfect complexes. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 173-187. doi : 10.4310/HHA.2023.v25.n1.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a9/
Cité par Sources :