Multicategories model all connective spectra
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 147-172.

Voir la notice de l'article provenant de la source International Press of Boston

There is a free construction from multicategories to permutative categories, left adjoint to the endomorphism multicategory construction. The main result shows that these functors induce an equivalence of homotopy theories. This result extends a similar result of Thomason, that permutative categories model all connective spectra.
DOI : 10.4310/HHA.2023.v25.n1.a8
Classification : 55P42
Keywords: multicategory, connective spectrum, permutative category
@article{HHA_2023_25_1_a7,
     author = {Niles Johnson and Donald Yau},
     title = {Multicategories model all connective spectra},
     journal = {Homology, homotopy, and applications},
     pages = {147--172},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a8/}
}
TY  - JOUR
AU  - Niles Johnson
AU  - Donald Yau
TI  - Multicategories model all connective spectra
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 147
EP  - 172
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a8/
DO  - 10.4310/HHA.2023.v25.n1.a8
LA  - en
ID  - HHA_2023_25_1_a7
ER  - 
%0 Journal Article
%A Niles Johnson
%A Donald Yau
%T Multicategories model all connective spectra
%J Homology, homotopy, and applications
%D 2023
%P 147-172
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a8/
%R 10.4310/HHA.2023.v25.n1.a8
%G en
%F HHA_2023_25_1_a7
Niles Johnson; Donald Yau. Multicategories model all connective spectra. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 147-172. doi : 10.4310/HHA.2023.v25.n1.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a8/

Cité par Sources :