Voir la notice de l'article provenant de la source International Press of Boston
@article{HHA_2023_25_1_a5, author = {L\'or\'ant Szegedy}, title = {On invertible $2$-dimensional framed and $r$-spin topological field theories}, journal = {Homology, homotopy, and applications}, pages = {105--126}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2023}, doi = {10.4310/HHA.2023.v25.n1.a6}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a6/} }
TY - JOUR AU - Lóránt Szegedy TI - On invertible $2$-dimensional framed and $r$-spin topological field theories JO - Homology, homotopy, and applications PY - 2023 SP - 105 EP - 126 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a6/ DO - 10.4310/HHA.2023.v25.n1.a6 LA - en ID - HHA_2023_25_1_a5 ER -
%0 Journal Article %A Lóránt Szegedy %T On invertible $2$-dimensional framed and $r$-spin topological field theories %J Homology, homotopy, and applications %D 2023 %P 105-126 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a6/ %R 10.4310/HHA.2023.v25.n1.a6 %G en %F HHA_2023_25_1_a5
Lóránt Szegedy. On invertible $2$-dimensional framed and $r$-spin topological field theories. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 105-126. doi : 10.4310/HHA.2023.v25.n1.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a6/
Cité par Sources :