Stable equivariant complex cobordism of the symmetric group on three elements
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 87-103.

Voir la notice de l'article provenant de la source International Press of Boston

In this paper, we calculate the coefficient ring of equivariant Thom complex cobordism for the symmetric group on three elements. We also make some remarks on general methods of calculating certain pullbacks of rings which typically occur in calculations of equivariant cobordism.
DOI : 10.4310/HHA.2023.v25.n1.a5
Classification : 55N91, 57R85
Keywords: equivariant cobordism, equivariant cohomology, symmetric group
@article{HHA_2023_25_1_a4,
     author = {Po Hu and Igor Kriz and Yunze Lu},
     title = {Stable equivariant complex cobordism of the symmetric group on three elements},
     journal = {Homology, homotopy, and applications},
     pages = {87--103},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a5/}
}
TY  - JOUR
AU  - Po Hu
AU  - Igor Kriz
AU  - Yunze Lu
TI  - Stable equivariant complex cobordism of the symmetric group on three elements
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 87
EP  - 103
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a5/
DO  - 10.4310/HHA.2023.v25.n1.a5
LA  - en
ID  - HHA_2023_25_1_a4
ER  - 
%0 Journal Article
%A Po Hu
%A Igor Kriz
%A Yunze Lu
%T Stable equivariant complex cobordism of the symmetric group on three elements
%J Homology, homotopy, and applications
%D 2023
%P 87-103
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a5/
%R 10.4310/HHA.2023.v25.n1.a5
%G en
%F HHA_2023_25_1_a4
Po Hu; Igor Kriz; Yunze Lu. Stable equivariant complex cobordism of the symmetric group on three elements. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 87-103. doi : 10.4310/HHA.2023.v25.n1.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a5/

Cité par Sources :