Constructing coproducts in locally Cartesian closed $\infty$-categories
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 71-86.

Voir la notice de l'article provenant de la source International Press of Boston

We prove that every locally Cartesian closed $\infty$-category with a subobject classifier has a strict initial object and disjoint and universal binary coproducts.
DOI : 10.4310/HHA.2023.v25.n1.a4
Classification : 03G30, 18B25
Keywords: higher category theory, higher topos theory, homotopy type theory, coproduct, impredicative encoding
@article{HHA_2023_25_1_a3,
     author = {Jonas Frey and Nima Rasekh},
     title = {Constructing coproducts in locally {Cartesian} closed $\infty$-categories},
     journal = {Homology, homotopy, and applications},
     pages = {71--86},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a4/}
}
TY  - JOUR
AU  - Jonas Frey
AU  - Nima Rasekh
TI  - Constructing coproducts in locally Cartesian closed $\infty$-categories
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 71
EP  - 86
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a4/
DO  - 10.4310/HHA.2023.v25.n1.a4
LA  - en
ID  - HHA_2023_25_1_a3
ER  - 
%0 Journal Article
%A Jonas Frey
%A Nima Rasekh
%T Constructing coproducts in locally Cartesian closed $\infty$-categories
%J Homology, homotopy, and applications
%D 2023
%P 71-86
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a4/
%R 10.4310/HHA.2023.v25.n1.a4
%G en
%F HHA_2023_25_1_a3
Jonas Frey; Nima Rasekh. Constructing coproducts in locally Cartesian closed $\infty$-categories. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 71-86. doi : 10.4310/HHA.2023.v25.n1.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a4/

Cité par Sources :