Koszul duality in higher topoi
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 53-70.

Voir la notice de l'article provenant de la source International Press of Boston

We show that there is an equivalence in any $n$-topos $\mathscr{X}$ between the pointed and $k$-connective objects of $\mathscr{X}$ and the $\mathbb{E}_k$-group objects of the $(n-k-1)$-truncation of $\mathscr{X}$. This recovers, up to equivalence of $\infty$-categories, some classical results regarding algebraic models for $k$-connective, $(n-1)$-coconnective homotopy types. Further, it extends those results to the case of sheaves of such homotopy types. We also show that for any pointed and $k$-connective object $X$ of $\mathscr{X}$ there is an equivalence between the $\infty$-category of modules in $\mathscr{X}$ over the associative algebra $\Omega^k X$, and the $\infty$-category of comodules in $\mathscr{X}$ for the cocommutative coalgebra $\Omega^{k-1} X$. All of these equivalences are given by truncations of Lurie’s $\infty$-categorical bar and cobar constructions, hence the terminology “Koszul duality.”
DOI : 10.4310/HHA.2023.v25.n1.a3
Classification : 16T15, 18D35, 55U30
@article{HHA_2023_25_1_a2,
     author = {Jonathan Beardsley and Maximilien P\'eroux},
     title = {Koszul duality in higher topoi},
     journal = {Homology, homotopy, and applications},
     pages = {53--70},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a3/}
}
TY  - JOUR
AU  - Jonathan Beardsley
AU  - Maximilien Péroux
TI  - Koszul duality in higher topoi
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 53
EP  - 70
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a3/
DO  - 10.4310/HHA.2023.v25.n1.a3
LA  - en
ID  - HHA_2023_25_1_a2
ER  - 
%0 Journal Article
%A Jonathan Beardsley
%A Maximilien Péroux
%T Koszul duality in higher topoi
%J Homology, homotopy, and applications
%D 2023
%P 53-70
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a3/
%R 10.4310/HHA.2023.v25.n1.a3
%G en
%F HHA_2023_25_1_a2
Jonathan Beardsley; Maximilien Péroux. Koszul duality in higher topoi. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 53-70. doi : 10.4310/HHA.2023.v25.n1.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a3/

Cité par Sources :