Homotopy type of the space of finite propagation unitary operators on $\mathbb{Z}$
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 375-400.

Voir la notice de l'article provenant de la source International Press of Boston

The index theory for the space of finite propagation unitary operators was developed by Gross, Nesme, Vogts and Werner from the viewpoint of quantum walks in mathematical physics. In particular, they proved that $\pi_0$ of the space is determined by the index. However, nothing is known about the higher homotopy groups. In this article, we describe the homotopy type of the space of finite propagation unitary operators on the Hilbert space of square summable $\mathbb{C}$-valued $\mathbb{Z}$-sequences, so we can determine its homotopy groups. We also study the space of (end-)periodic finite propagation unitary operators.
DOI : 10.4310/HHA.2023.v25.n1.a20
Classification : 55Q52, 46L80, 81R10
Keywords: finite propagation, unitary operator, homotopy group, homotopy type, Grassmannian
@article{HHA_2023_25_1_a19,
     author = {Tsuyoshi Kato and Daisuke Kishimoto and Mitsunobu Tsutaya},
     title = {Homotopy type of the space of finite propagation unitary operators on $\mathbb{Z}$},
     journal = {Homology, homotopy, and applications},
     pages = {375--400},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a20/}
}
TY  - JOUR
AU  - Tsuyoshi Kato
AU  - Daisuke Kishimoto
AU  - Mitsunobu Tsutaya
TI  - Homotopy type of the space of finite propagation unitary operators on $\mathbb{Z}$
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 375
EP  - 400
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a20/
DO  - 10.4310/HHA.2023.v25.n1.a20
LA  - en
ID  - HHA_2023_25_1_a19
ER  - 
%0 Journal Article
%A Tsuyoshi Kato
%A Daisuke Kishimoto
%A Mitsunobu Tsutaya
%T Homotopy type of the space of finite propagation unitary operators on $\mathbb{Z}$
%J Homology, homotopy, and applications
%D 2023
%P 375-400
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a20/
%R 10.4310/HHA.2023.v25.n1.a20
%G en
%F HHA_2023_25_1_a19
Tsuyoshi Kato; Daisuke Kishimoto; Mitsunobu Tsutaya. Homotopy type of the space of finite propagation unitary operators on $\mathbb{Z}$. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 375-400. doi : 10.4310/HHA.2023.v25.n1.a20. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a20/

Cité par Sources :