Fiber integration of gerbes and Deligne line bundles
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 21-51.

Voir la notice de l'article provenant de la source International Press of Boston

Let $\pi : X \to S$ be a family of smooth projective curves, and let $L$ and $M$ be a pair of line bundles on $X$. We show that Deligne’s line bundle $\langle L,M \rangle$ can be obtained from the $\mathcal{K}_2$-gerbe $G_{L,M}$ constructed in [AR16] via an integration along the fiber map for gerbes that categorifies the well known one arising from the Leray spectral sequence of $\pi$. Our construction provides a full account of the biadditivity properties of $\langle L,M \rangle$. Our main application is to the categorification of correspondences on the self-product of a curve. The functorial description of the low degree maps in the Leray spectral sequence for $\pi$ that we develop is of independent interest, and, along the way, we provide an example of their application to the Brauer group.
DOI : 10.4310/HHA.2023.v25.n1.a2
Classification : 14C25, 14F42, 55N15, 55P20
Keywords: algebraic cycle, gerbe, higher category
@article{HHA_2023_25_1_a1,
     author = {Ettore Aldrovandi and Niranjan Ramachandran},
     title = {Fiber integration of gerbes and {Deligne} line bundles},
     journal = {Homology, homotopy, and applications},
     pages = {21--51},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a2/}
}
TY  - JOUR
AU  - Ettore Aldrovandi
AU  - Niranjan Ramachandran
TI  - Fiber integration of gerbes and Deligne line bundles
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 21
EP  - 51
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a2/
DO  - 10.4310/HHA.2023.v25.n1.a2
LA  - en
ID  - HHA_2023_25_1_a1
ER  - 
%0 Journal Article
%A Ettore Aldrovandi
%A Niranjan Ramachandran
%T Fiber integration of gerbes and Deligne line bundles
%J Homology, homotopy, and applications
%D 2023
%P 21-51
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a2/
%R 10.4310/HHA.2023.v25.n1.a2
%G en
%F HHA_2023_25_1_a1
Ettore Aldrovandi; Niranjan Ramachandran. Fiber integration of gerbes and Deligne line bundles. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 21-51. doi : 10.4310/HHA.2023.v25.n1.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a2/

Cité par Sources :