The category of Silva spaces is not integral
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 367-374.

Voir la notice de l'article provenant de la source International Press of Boston

We establish that the category of Silva spaces, aka $\mathrm{LS}$-spaces, formed by countable inductive limits of Banach spaces with compact linking maps as objects and linear and continuous maps as morphisms, is not an integral category. The result carries over to the category of $\mathrm{PLS}$-spaces, i.e., countable projective limits of $\mathrm{LS}$-spaces—which contains prominent spaces of analysis such as the space of distributions and the space of real analytic functions. As a consequence, we obtain that both categories neither have enough projective nor enough injective objects. All results hold true when ‘compact’ is replaced by ‘weakly compact’ or ‘nuclear’. This leads to the categories of $\mathrm{PLS}$-, $\mathrm{PLS_w}$- and $\mathrm{PLN}$-spaces, which are examples of ‘inflation exact categories with admissible cokernels’ as recently introduced by Henrard, Kvamme, van Roosmalen and the second-named author.
DOI : 10.4310/HHA.2023.v25.n1.a19
Classification : 18Gxx, 46A45, 46M10, 18E05, 46A13
Keywords: $\mathrm{LS}$-space, $\mathrm{PLS}$-space, integral category, injective or projective object
@article{HHA_2023_25_1_a18,
     author = {Marianne Lawson and Sven-Ake Wegner},
     title = {The category of {Silva} spaces is not integral},
     journal = {Homology, homotopy, and applications},
     pages = {367--374},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a19/}
}
TY  - JOUR
AU  - Marianne Lawson
AU  - Sven-Ake Wegner
TI  - The category of Silva spaces is not integral
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 367
EP  - 374
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a19/
DO  - 10.4310/HHA.2023.v25.n1.a19
LA  - en
ID  - HHA_2023_25_1_a18
ER  - 
%0 Journal Article
%A Marianne Lawson
%A Sven-Ake Wegner
%T The category of Silva spaces is not integral
%J Homology, homotopy, and applications
%D 2023
%P 367-374
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a19/
%R 10.4310/HHA.2023.v25.n1.a19
%G en
%F HHA_2023_25_1_a18
Marianne Lawson; Sven-Ake Wegner. The category of Silva spaces is not integral. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 367-374. doi : 10.4310/HHA.2023.v25.n1.a19. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a19/

Cité par Sources :