Magnitude homology of graphs and discrete Morse theory on Asao–Izumihara complexes
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 331-343.

Voir la notice de l'article provenant de la source International Press of Boston

Recently, Asao and Izumihara introduced CW-complexes whose homology groups are isomorphic to direct summands of the graph magnitude homology group. In this paper, we study the homotopy type of the CW-complexes in connection with the diagonality of magnitude homology groups. We prove that the Asao–Izumihara complex is homotopy equivalent to a wedge of spheres for pawful graphs introduced by Y. Gu. The result can be considered as a homotopy type version of Gu’s result. We also formulate a slight generalization of the notion of pawful graphs and find new non-pawful diagonal graphs of diameter $2$.
DOI : 10.4310/HHA.2023.v25.n1.a17
Classification : 05C10, 05E45, 55N35
Keywords: magnitude homology, graph, discrete Morse theory
@article{HHA_2023_25_1_a16,
     author = {Yu Tajima and Masahiko Yoshinaga},
     title = {Magnitude homology of graphs and discrete {Morse} theory on {Asao{\textendash}Izumihara} complexes},
     journal = {Homology, homotopy, and applications},
     pages = {331--343},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a17/}
}
TY  - JOUR
AU  - Yu Tajima
AU  - Masahiko Yoshinaga
TI  - Magnitude homology of graphs and discrete Morse theory on Asao–Izumihara complexes
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 331
EP  - 343
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a17/
DO  - 10.4310/HHA.2023.v25.n1.a17
LA  - en
ID  - HHA_2023_25_1_a16
ER  - 
%0 Journal Article
%A Yu Tajima
%A Masahiko Yoshinaga
%T Magnitude homology of graphs and discrete Morse theory on Asao–Izumihara complexes
%J Homology, homotopy, and applications
%D 2023
%P 331-343
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a17/
%R 10.4310/HHA.2023.v25.n1.a17
%G en
%F HHA_2023_25_1_a16
Yu Tajima; Masahiko Yoshinaga. Magnitude homology of graphs and discrete Morse theory on Asao–Izumihara complexes. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 331-343. doi : 10.4310/HHA.2023.v25.n1.a17. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a17/

Cité par Sources :