Complex orientations and $\mathrm{TP}$ of complete DVRs
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 319-330.

Voir la notice de l'article provenant de la source International Press of Boston

Let $L$ be a finite extension of $\mathbb{Q}_p$ with ring of integers $\mathcal{O}_L$. We show that periodic topological cyclic homology of $\mathcal{O}_L$, over the base $\mathbb{E}_\infty$-ring $\mathbb{S}_{W(\mathbb{F}_q)} [z]$ carries a $p$-height one formal group law $\operatorname{mod}(p)$ that depends on an Eisenstein polynomial of $L$ over $\mathbb{Q}_p$ for a choice of uniformizer $\varpi \in \mathcal{O}_L$.
DOI : 10.4310/HHA.2023.v25.n1.a16
Classification : 11S70, 19D55, 55N22, 55Q51
Keywords: periodic topological cyclic homology, complex orientation
@article{HHA_2023_25_1_a15,
     author = {Gabriel Angelini-Knoll},
     title = {Complex orientations and $\mathrm{TP}$ of complete {DVRs}},
     journal = {Homology, homotopy, and applications},
     pages = {319--330},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a16/}
}
TY  - JOUR
AU  - Gabriel Angelini-Knoll
TI  - Complex orientations and $\mathrm{TP}$ of complete DVRs
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 319
EP  - 330
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a16/
DO  - 10.4310/HHA.2023.v25.n1.a16
LA  - en
ID  - HHA_2023_25_1_a15
ER  - 
%0 Journal Article
%A Gabriel Angelini-Knoll
%T Complex orientations and $\mathrm{TP}$ of complete DVRs
%J Homology, homotopy, and applications
%D 2023
%P 319-330
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a16/
%R 10.4310/HHA.2023.v25.n1.a16
%G en
%F HHA_2023_25_1_a15
Gabriel Angelini-Knoll. Complex orientations and $\mathrm{TP}$ of complete DVRs. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 319-330. doi : 10.4310/HHA.2023.v25.n1.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a16/

Cité par Sources :