Cyclic $A_\infty$-algebras and cyclic homology
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 287-318.

Voir la notice de l'article provenant de la source International Press of Boston

We provide a new description of the complex computing the Hochschild homology of an $H$-unitary $A_\infty$-algebra $A$ as a derived tensor product $A \oplus^\infty_{A^\epsilon}$ such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of $A$ that was introduced by Kontsevich and Soibelman, (2) this morphism induces the map $I$ in the well-known SBI sequence, and (3) $H^0 \left( (A \oplus^\infty_{A^\epsilon} A)^\# \right)$ is canonically isomorphic to the space of morphisms from $A$ to $A^\#$ in the derived category of $A_\infty$-bimodules. As direct consequences we obtain previous results of Cho and Cho–Lee, as well as the fact that Koszul duality establishes a bijection between (resp., almost exact) $d$-Calabi–Yau structures and (resp., strong) homotopy inner products, extending a result proved by Van den Bergh.
DOI : 10.4310/HHA.2023.v25.n1.a15
Classification : 16E05, 16E40, 16E45, 16T15
Keywords: dg (co)algebra, $A_\infty$-algebra, Calabi–Yau, Koszul duality
@article{HHA_2023_25_1_a14,
     author = {Estanislao Herscovich},
     title = {Cyclic $A_\infty$-algebras and cyclic homology},
     journal = {Homology, homotopy, and applications},
     pages = {287--318},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a15/}
}
TY  - JOUR
AU  - Estanislao Herscovich
TI  - Cyclic $A_\infty$-algebras and cyclic homology
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 287
EP  - 318
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a15/
DO  - 10.4310/HHA.2023.v25.n1.a15
LA  - en
ID  - HHA_2023_25_1_a14
ER  - 
%0 Journal Article
%A Estanislao Herscovich
%T Cyclic $A_\infty$-algebras and cyclic homology
%J Homology, homotopy, and applications
%D 2023
%P 287-318
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a15/
%R 10.4310/HHA.2023.v25.n1.a15
%G en
%F HHA_2023_25_1_a14
Estanislao Herscovich. Cyclic $A_\infty$-algebras and cyclic homology. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 287-318. doi : 10.4310/HHA.2023.v25.n1.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a15/

Cité par Sources :