A(nother) model for the framed little disks operad
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 265-285.

Voir la notice de l'article provenant de la source International Press of Boston

We describe new graphical models of the framed little disks operad which exhibit large symmetry $\mathrm{dg}$ Lie algebras.
DOI : 10.4310/HHA.2023.v25.n1.a14
Classification : 16E45, 18G55, 53C15, 53D55
Keywords: framed little disks operad, graph complex, real algebraic model, symmetry $\mathrm{dg}$ Lie algebra
@article{HHA_2023_25_1_a13,
     author = {Erik Lindell and Thomas Willwacher},
     title = {A(nother) model for the framed little disks operad},
     journal = {Homology, homotopy, and applications},
     pages = {265--285},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a14/}
}
TY  - JOUR
AU  - Erik Lindell
AU  - Thomas Willwacher
TI  - A(nother) model for the framed little disks operad
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 265
EP  - 285
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a14/
DO  - 10.4310/HHA.2023.v25.n1.a14
LA  - en
ID  - HHA_2023_25_1_a13
ER  - 
%0 Journal Article
%A Erik Lindell
%A Thomas Willwacher
%T A(nother) model for the framed little disks operad
%J Homology, homotopy, and applications
%D 2023
%P 265-285
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a14/
%R 10.4310/HHA.2023.v25.n1.a14
%G en
%F HHA_2023_25_1_a13
Erik Lindell; Thomas Willwacher. A(nother) model for the framed little disks operad. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 265-285. doi : 10.4310/HHA.2023.v25.n1.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a14/

Cité par Sources :