The homotopy types of $Sp(n)$-gauge groups over $\mathbb{C}P^2$
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 219-233.

Voir la notice de l'article provenant de la source International Press of Boston

Let $n \gt 2$ and $\mathcal{G}_k (\mathbb{C}P^2)$ be the gauge groups of the principal $Sp(n)$-bundles over $\mathbb{C}P^2$. In this article we partially classify the homotopy types of $\mathcal{G}_k (\mathbb{C}P^2)$ by showing that if there is a homotopy equivalence $\mathcal{G}_k (\mathbb{C}P^2) \simeq \mathcal{G}_{k^\prime} (\mathbb{C}P^2)$ then $(k, 4n(2n + 1)) = (k^\prime , 4n(2n + 1))$.
DOI : 10.4310/HHA.2023.v25.n1.a11
Classification : 55P15, 54C35
Keywords: gauge group, homotopy type, symplectic group
@article{HHA_2023_25_1_a10,
     author = {Sajjad Mohammadi},
     title = {The homotopy types of $Sp(n)$-gauge groups over $\mathbb{C}P^2$},
     journal = {Homology, homotopy, and applications},
     pages = {219--233},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a11/}
}
TY  - JOUR
AU  - Sajjad Mohammadi
TI  - The homotopy types of $Sp(n)$-gauge groups over $\mathbb{C}P^2$
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 219
EP  - 233
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a11/
DO  - 10.4310/HHA.2023.v25.n1.a11
LA  - en
ID  - HHA_2023_25_1_a10
ER  - 
%0 Journal Article
%A Sajjad Mohammadi
%T The homotopy types of $Sp(n)$-gauge groups over $\mathbb{C}P^2$
%J Homology, homotopy, and applications
%D 2023
%P 219-233
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a11/
%R 10.4310/HHA.2023.v25.n1.a11
%G en
%F HHA_2023_25_1_a10
Sajjad Mohammadi. The homotopy types of $Sp(n)$-gauge groups over $\mathbb{C}P^2$. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 219-233. doi : 10.4310/HHA.2023.v25.n1.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a11/

Cité par Sources :