Voir la notice de l'article provenant de la source International Press of Boston
@article{HHA_2023_25_1_a10, author = {Sajjad Mohammadi}, title = {The homotopy types of $Sp(n)$-gauge groups over $\mathbb{C}P^2$}, journal = {Homology, homotopy, and applications}, pages = {219--233}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2023}, doi = {10.4310/HHA.2023.v25.n1.a11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a11/} }
TY - JOUR AU - Sajjad Mohammadi TI - The homotopy types of $Sp(n)$-gauge groups over $\mathbb{C}P^2$ JO - Homology, homotopy, and applications PY - 2023 SP - 219 EP - 233 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a11/ DO - 10.4310/HHA.2023.v25.n1.a11 LA - en ID - HHA_2023_25_1_a10 ER -
%0 Journal Article %A Sajjad Mohammadi %T The homotopy types of $Sp(n)$-gauge groups over $\mathbb{C}P^2$ %J Homology, homotopy, and applications %D 2023 %P 219-233 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a11/ %R 10.4310/HHA.2023.v25.n1.a11 %G en %F HHA_2023_25_1_a10
Sajjad Mohammadi. The homotopy types of $Sp(n)$-gauge groups over $\mathbb{C}P^2$. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 219-233. doi : 10.4310/HHA.2023.v25.n1.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a11/
Cité par Sources :