Derived universal Massey products
Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 189-218.

Voir la notice de l'article provenant de la source International Press of Boston

We define an obstruction to the formality of a differential graded algebra over a graded operad defined over a commutative ground ring. This obstruction lives in the derived operadic cohomology of the algebra. Moreover, it determines all operadic Massey products induced on the homology algebra, hence the name of derived universal Massey product.
DOI : 10.4310/HHA.2023.v25.n1.a10
Classification : 13D03, 16E40, 17B56, 55S20
Keywords: operad, algebra, cohomology, formality, minimal model, resolution
@article{HHA_2023_25_1_a9,
     author = {Fernando Muro},
     title = {Derived universal {Massey} products},
     journal = {Homology, homotopy, and applications},
     pages = {189--218},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     doi = {10.4310/HHA.2023.v25.n1.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a10/}
}
TY  - JOUR
AU  - Fernando Muro
TI  - Derived universal Massey products
JO  - Homology, homotopy, and applications
PY  - 2023
SP  - 189
EP  - 218
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a10/
DO  - 10.4310/HHA.2023.v25.n1.a10
LA  - en
ID  - HHA_2023_25_1_a9
ER  - 
%0 Journal Article
%A Fernando Muro
%T Derived universal Massey products
%J Homology, homotopy, and applications
%D 2023
%P 189-218
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a10/
%R 10.4310/HHA.2023.v25.n1.a10
%G en
%F HHA_2023_25_1_a9
Fernando Muro. Derived universal Massey products. Homology, homotopy, and applications, Tome 25 (2023) no. 1, pp. 189-218. doi : 10.4310/HHA.2023.v25.n1.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2023.v25.n1.a10/

Cité par Sources :