On cohomology in symmetric tensor categories in prime characteristic
Homology, homotopy, and applications, Tome 24 (2022) no. 2, pp. 163-193.

Voir la notice de l'article provenant de la source International Press of Boston

We describe graded commutative Gorenstein algebras $\mathcal{E}_n(p)$ over a field of prime characteristic $p$, and we conjecture that $\mathrm{Ext}^\bullet_{\mathsf{Ver}_{p^{n+1}}} (\mathbb{1},\mathbb{1}) \cong \mathcal{E}_{n}(p)$, where $\mathsf{Ver}_{p^{n+1}}$ are the new symmetric tensor categories recently constructed by the current authors, with Ostrik, and also by Coulembier. We investigate the combinatorics of these algebras, and the relationship with Minc’s partition function, as well as possible actions of the Steenrod operations on them. Evidence for the conjecture includes a large number of computations for small values of $n$. We also provide some theoretical evidence. Namely, we use a Koszul construction to identify a homogeneous system of parameters in $\mathcal{E}_n(p)$ with a homogeneous system of parameters in $\mathrm{Ext}^\bullet_{\mathsf{Ver}_{p^{n+1}}} (\mathbb{1},\mathbb{1})$. These parameters have degrees $2^i-1$ if $p=2$ and $2(p^i-1)$ if $p$ is odd, for $1\leqslant i \leqslant n$. This at least shows that $\mathrm{Ext}^\bullet_{\mathsf{Ver}_{p^{n+1}}}(\mathbb{1},\mathbb{1})$ is a finitely generated graded commutative algebra with the same Krull dimension as $\mathcal{E}_n(p)$. For $p=2$ we also show that $\mathrm{Ext}^\bullet_{\mathsf{Ver}_{2^{n+1}}}(\mathbb{1},\mathbb{1})$ has the expected rank $2^{n(n-1)/2}$ as a module over the subalgebra of parameters.
DOI : 10.4310/HHA.2022.v24.n2.a8
Classification : 13H10, 16E30, 55S10
Keywords: symmetric tensor category, cohomology ring, Gorenstein algebra, Minc’s partition function, Steenrod operation
@article{HHA_2022_24_2_a7,
     author = {David Benson and Pavel Etingof},
     title = {On cohomology in symmetric tensor categories in prime characteristic},
     journal = {Homology, homotopy, and applications},
     pages = {163--193},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     doi = {10.4310/HHA.2022.v24.n2.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n2.a8/}
}
TY  - JOUR
AU  - David Benson
AU  - Pavel Etingof
TI  - On cohomology in symmetric tensor categories in prime characteristic
JO  - Homology, homotopy, and applications
PY  - 2022
SP  - 163
EP  - 193
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n2.a8/
DO  - 10.4310/HHA.2022.v24.n2.a8
LA  - en
ID  - HHA_2022_24_2_a7
ER  - 
%0 Journal Article
%A David Benson
%A Pavel Etingof
%T On cohomology in symmetric tensor categories in prime characteristic
%J Homology, homotopy, and applications
%D 2022
%P 163-193
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n2.a8/
%R 10.4310/HHA.2022.v24.n2.a8
%G en
%F HHA_2022_24_2_a7
David Benson; Pavel Etingof. On cohomology in symmetric tensor categories in prime characteristic. Homology, homotopy, and applications, Tome 24 (2022) no. 2, pp. 163-193. doi : 10.4310/HHA.2022.v24.n2.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n2.a8/

Cité par Sources :