$1$-smooth pro-$p$ groups and Bloch–Kato pro-$p$ groups
Homology, homotopy, and applications, Tome 24 (2022) no. 2, pp. 53-67.

Voir la notice de l'article provenant de la source International Press of Boston

Let $p$ be a prime. A pro‑$p$ group $G$ is said to be $1$-smooth if it can be endowed with a homomorphism of pro‑$p$ groups of the form $G \to 1 + p \mathbb{Z}_p$ satisfying a formal version of Hilbert 90. By Kummer theory, maximal pro‑$p$ Galois groups of fields containing a root of $1$ of order $p$, together with the cyclotomic character, are $1$-smooth. We prove that a finitely generated padic analytic pro‑$p$ group is $1$-smooth if, and only if, it occurs as the maximal pro‑$p$ Galois group of a field containing a root of $1$ of order $p$. This gives a positive answer to De Clercq–Florence’s “Smoothness Conjecture” — which states that the surjectivity of the norm residue homomorphism (i.e., the “surjective half” of the Bloch–Kato Conjecture) follows from $1$-smoothness — for the class of finitely generated $p$-adic analytic pro‑$p$ groups.
DOI : 10.4310/HHA.2022.v24.n2.a3
Classification : 12F10, 12G05, 20E18, 20J06
Keywords: Galois cohomology, maximal pro-$p$ Galois group, Bloch–Kato conjecture, cyclotomic character, $p$-adic analytic group
@article{HHA_2022_24_2_a2,
     author = {Claudio Quadrelli},
     title = {$1$-smooth pro-$p$ groups and {Bloch{\textendash}Kato} pro-$p$ groups},
     journal = {Homology, homotopy, and applications},
     pages = {53--67},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     doi = {10.4310/HHA.2022.v24.n2.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n2.a3/}
}
TY  - JOUR
AU  - Claudio Quadrelli
TI  - $1$-smooth pro-$p$ groups and Bloch–Kato pro-$p$ groups
JO  - Homology, homotopy, and applications
PY  - 2022
SP  - 53
EP  - 67
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n2.a3/
DO  - 10.4310/HHA.2022.v24.n2.a3
LA  - en
ID  - HHA_2022_24_2_a2
ER  - 
%0 Journal Article
%A Claudio Quadrelli
%T $1$-smooth pro-$p$ groups and Bloch–Kato pro-$p$ groups
%J Homology, homotopy, and applications
%D 2022
%P 53-67
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n2.a3/
%R 10.4310/HHA.2022.v24.n2.a3
%G en
%F HHA_2022_24_2_a2
Claudio Quadrelli. $1$-smooth pro-$p$ groups and Bloch–Kato pro-$p$ groups. Homology, homotopy, and applications, Tome 24 (2022) no. 2, pp. 53-67. doi : 10.4310/HHA.2022.v24.n2.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n2.a3/

Cité par Sources :