Exponentials of non-singular simplicial sets
Homology, homotopy, and applications, Tome 24 (2022) no. 2, pp. 307-314.

Voir la notice de l'article provenant de la source International Press of Boston

A simplicial set is non-singular if the representing map of each non-degenerate simplex is degreewise injective. The simplicial mapping set $X^K$ has $n$‑simplices given by the simplicial maps $\Delta [n] \times K \to X$. We prove that $X^K$ is non-singular whenever $X$ is non-singular. It follows that non-singular simplicial sets form a cartesian closed category with all limits and colimits, but it is not a topos.
DOI : 10.4310/HHA.2022.v24.n2.a15
Classification : 18D15, 55U10
Keywords: non-singular simplicial set, exponential ideal, cartesian closed category
@article{HHA_2022_24_2_a14,
     author = {Vegard Fjellbo and John Rognes},
     title = {Exponentials of non-singular simplicial sets},
     journal = {Homology, homotopy, and applications},
     pages = {307--314},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     doi = {10.4310/HHA.2022.v24.n2.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n2.a15/}
}
TY  - JOUR
AU  - Vegard Fjellbo
AU  - John Rognes
TI  - Exponentials of non-singular simplicial sets
JO  - Homology, homotopy, and applications
PY  - 2022
SP  - 307
EP  - 314
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n2.a15/
DO  - 10.4310/HHA.2022.v24.n2.a15
LA  - en
ID  - HHA_2022_24_2_a14
ER  - 
%0 Journal Article
%A Vegard Fjellbo
%A John Rognes
%T Exponentials of non-singular simplicial sets
%J Homology, homotopy, and applications
%D 2022
%P 307-314
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n2.a15/
%R 10.4310/HHA.2022.v24.n2.a15
%G en
%F HHA_2022_24_2_a14
Vegard Fjellbo; John Rognes. Exponentials of non-singular simplicial sets. Homology, homotopy, and applications, Tome 24 (2022) no. 2, pp. 307-314. doi : 10.4310/HHA.2022.v24.n2.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n2.a15/

Cité par Sources :