Structure of semi-continuous $q$-tame persistence modules
Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 117-128.

Voir la notice de l'article provenant de la source International Press of Boston

Using a result by Chazal, Crawley–Boevey and de Silva concerning radicals of persistence modules, we show that every lower semi-continuous $q$-tame persistence module can be decomposed as a direct sum of interval modules and that every upper semi-continuous $q$-tame persistence module can be decomposed as a product of interval modules.
DOI : 10.4310/HHA.2022.v24.n1.a6
Classification : 16G20, 55Nxx
Keywords: barcode, persistent homology, $q$-tame
@article{HHA_2022_24_1_a5,
     author = {Maximilian Schmahl},
     title = {Structure of semi-continuous $q$-tame persistence modules},
     journal = {Homology, homotopy, and applications},
     pages = {117--128},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.4310/HHA.2022.v24.n1.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a6/}
}
TY  - JOUR
AU  - Maximilian Schmahl
TI  - Structure of semi-continuous $q$-tame persistence modules
JO  - Homology, homotopy, and applications
PY  - 2022
SP  - 117
EP  - 128
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a6/
DO  - 10.4310/HHA.2022.v24.n1.a6
LA  - en
ID  - HHA_2022_24_1_a5
ER  - 
%0 Journal Article
%A Maximilian Schmahl
%T Structure of semi-continuous $q$-tame persistence modules
%J Homology, homotopy, and applications
%D 2022
%P 117-128
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a6/
%R 10.4310/HHA.2022.v24.n1.a6
%G en
%F HHA_2022_24_1_a5
Maximilian Schmahl. Structure of semi-continuous $q$-tame persistence modules. Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 117-128. doi : 10.4310/HHA.2022.v24.n1.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a6/

Cité par Sources :