Voir la notice de l'article provenant de la source International Press of Boston
@article{HHA_2022_24_1_a5, author = {Maximilian Schmahl}, title = {Structure of semi-continuous $q$-tame persistence modules}, journal = {Homology, homotopy, and applications}, pages = {117--128}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2022}, doi = {10.4310/HHA.2022.v24.n1.a6}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a6/} }
TY - JOUR AU - Maximilian Schmahl TI - Structure of semi-continuous $q$-tame persistence modules JO - Homology, homotopy, and applications PY - 2022 SP - 117 EP - 128 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a6/ DO - 10.4310/HHA.2022.v24.n1.a6 LA - en ID - HHA_2022_24_1_a5 ER -
%0 Journal Article %A Maximilian Schmahl %T Structure of semi-continuous $q$-tame persistence modules %J Homology, homotopy, and applications %D 2022 %P 117-128 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a6/ %R 10.4310/HHA.2022.v24.n1.a6 %G en %F HHA_2022_24_1_a5
Maximilian Schmahl. Structure of semi-continuous $q$-tame persistence modules. Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 117-128. doi : 10.4310/HHA.2022.v24.n1.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a6/
Cité par Sources :