The homotopy types of $SU(n)$-gauge groups over $S^{2m}$
Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 55-70.

Voir la notice de l'article provenant de la source International Press of Boston

Let $m$ and $n$ be two positive integers such that $m \leqslant n$. Denote by $P_{n,k}$ the principal $SU(n)$-bundle over $S^{2m}$ with Chern class $c_m (P_{n,k}) = (m-1)!k$ and let $\mathcal{G}_{k,m} (SU(n))$ be the gauge group of $P_{n,k}$ classified by $k \varepsilon^\prime$, where $\varepsilon^\prime$ is a generator of $\pi_{2m} (B(SU(n)) \cong \mathbb{Z}$. In this article we partially classify the homotopy types of $\mathcal{G}_{k,m} (SU(n))$, by showing that if there is a homotopy equivalence $\mathcal{G}_{k,m} (SU(n)) \simeq \mathcal{G}_{k^\prime,m} (SU(n))$ then in case $m$ is odd and $m \geqslant 3, (\frac{2}{(m-1)!} p_2, k) = (\frac{2}{(m-1)!}p_2, k^\prime)$ and in case $m$ is even and $m \geqslant 4, (\frac{1}{2(m-1)!} p_2, k) = (\frac{1}{2(m-1)!} p_2, k^\prime)$, where $p_2 = (n+2)(n+1) n (n-1) \dotsm (n-m+2)$. We study the group $[\Sigma^{2n} \mathbb{C}P^{n-1}, SU(n)]$. Also we discuss the order of the Samelson product $S^{2m-1} \wedge \Sigma \mathbb{C} P^{n-1} \to SU(n)$ when $m \lt n$.
DOI : 10.4310/HHA.2022.v24.n1.a3
Classification : 55P15, 54C35
Keywords: gauge group, homotopy type, Lie group, homotopy equivalence
@article{HHA_2022_24_1_a2,
     author = {Sajjad Mohammadi},
     title = {The homotopy types of $SU(n)$-gauge groups over $S^{2m}$},
     journal = {Homology, homotopy, and applications},
     pages = {55--70},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.4310/HHA.2022.v24.n1.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a3/}
}
TY  - JOUR
AU  - Sajjad Mohammadi
TI  - The homotopy types of $SU(n)$-gauge groups over $S^{2m}$
JO  - Homology, homotopy, and applications
PY  - 2022
SP  - 55
EP  - 70
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a3/
DO  - 10.4310/HHA.2022.v24.n1.a3
LA  - en
ID  - HHA_2022_24_1_a2
ER  - 
%0 Journal Article
%A Sajjad Mohammadi
%T The homotopy types of $SU(n)$-gauge groups over $S^{2m}$
%J Homology, homotopy, and applications
%D 2022
%P 55-70
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a3/
%R 10.4310/HHA.2022.v24.n1.a3
%G en
%F HHA_2022_24_1_a2
Sajjad Mohammadi. The homotopy types of $SU(n)$-gauge groups over $S^{2m}$. Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 55-70. doi : 10.4310/HHA.2022.v24.n1.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a3/

Cité par Sources :