Non-commutative localisation and finite domination over strongly $\mathbb{Z}$-graded rings
Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 373-398.

Voir la notice de l'article provenant de la source International Press of Boston

Let $R = \bigoplus^{\infty}_{ k =-\infty} R_k$ be a strongly $\mathbb{Z}$-graded ring, and let $C^{+}$ be a chain complex of modules over the positive subring $P = \bigoplus^{\infty}_{k=0} R_k$. The complex $C^{+} \oplus_P R_0$ is contractible (resp., $C^{+}$ is $R_0$-finitely dominated) if and only if $C^{+} \oplus_P L$ is contractible, where $L$ is a suitable non-commutative localisation of $P$. We exhibit universal properties of these localisations, and show by example that an $R_0$-finitely dominated complex need not be $P$-homotopy finite.
DOI : 10.4310/HHA.2022.v24.n1.a18
Classification : 16E99, 16W50, 18G35, 55U15
Keywords: non-commutative localisation, finite domination, type FP, strongly graded ring, Novikov homology, algebraic mapping torus, Mather trick
@article{HHA_2022_24_1_a17,
     author = {Thomas H\"uttemann},
     title = {Non-commutative localisation and finite domination over strongly $\mathbb{Z}$-graded rings},
     journal = {Homology, homotopy, and applications},
     pages = {373--398},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.4310/HHA.2022.v24.n1.a18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a18/}
}
TY  - JOUR
AU  - Thomas Hüttemann
TI  - Non-commutative localisation and finite domination over strongly $\mathbb{Z}$-graded rings
JO  - Homology, homotopy, and applications
PY  - 2022
SP  - 373
EP  - 398
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a18/
DO  - 10.4310/HHA.2022.v24.n1.a18
LA  - en
ID  - HHA_2022_24_1_a17
ER  - 
%0 Journal Article
%A Thomas Hüttemann
%T Non-commutative localisation and finite domination over strongly $\mathbb{Z}$-graded rings
%J Homology, homotopy, and applications
%D 2022
%P 373-398
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a18/
%R 10.4310/HHA.2022.v24.n1.a18
%G en
%F HHA_2022_24_1_a17
Thomas Hüttemann. Non-commutative localisation and finite domination over strongly $\mathbb{Z}$-graded rings. Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 373-398. doi : 10.4310/HHA.2022.v24.n1.a18. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a18/

Cité par Sources :