Cellular sheaves of lattices and the Tarski Laplacian
Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 325-345.

Voir la notice de l'article provenant de la source International Press of Boston

This paper initiates a discrete Hodge theory for cellular sheaves taking values in a category of lattices and Galois connections. The key development is the Tarski Laplacian, an endomorphism on the cochain complex whose fixed points yield a cohomology that agrees with the global section functor in degree zero. This has immediate applications in consensus and distributed optimization problems over networks and broader potential applications.
DOI : 10.4310/HHA.2022.v24.n1.a16
Classification : 05C50, 18B35, 18F20, 55N30
Keywords: cellular sheaves, lattice theory, non-abelian homological algebra
@article{HHA_2022_24_1_a15,
     author = {Robert Ghrist and Hans Riess},
     title = {Cellular sheaves of lattices and the {Tarski} {Laplacian}},
     journal = {Homology, homotopy, and applications},
     pages = {325--345},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.4310/HHA.2022.v24.n1.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a16/}
}
TY  - JOUR
AU  - Robert Ghrist
AU  - Hans Riess
TI  - Cellular sheaves of lattices and the Tarski Laplacian
JO  - Homology, homotopy, and applications
PY  - 2022
SP  - 325
EP  - 345
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a16/
DO  - 10.4310/HHA.2022.v24.n1.a16
LA  - en
ID  - HHA_2022_24_1_a15
ER  - 
%0 Journal Article
%A Robert Ghrist
%A Hans Riess
%T Cellular sheaves of lattices and the Tarski Laplacian
%J Homology, homotopy, and applications
%D 2022
%P 325-345
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a16/
%R 10.4310/HHA.2022.v24.n1.a16
%G en
%F HHA_2022_24_1_a15
Robert Ghrist; Hans Riess. Cellular sheaves of lattices and the Tarski Laplacian. Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 325-345. doi : 10.4310/HHA.2022.v24.n1.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a16/

Cité par Sources :