An $R$-motivic $v_1$-self-map of periodicity $1$
Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 299-324.

Voir la notice de l'article provenant de la source International Press of Boston

We consider a nontrivial action of $\mathrm{C}_2$ on the type $1$ spectrum $\mathcal{Y}:=\mathcal{M}_2(1) \wedge \mathrm{C}(\eta)$, which is well-known for admitting a $1$-periodic $v_1$-selfmap. The resultant finite $\mathrm{C}_2$-equivariant spectrum $\mathcal{Y}^{\mathrm{C}_2}$ can also be viewed as the complex points of a finite $\mathbb{R}$-motivic spectrum $\mathcal{Y}^\mathbb{R}$. In this paper, we show that one of the $1$-periodic $v_1$-self-maps of $\mathcal{Y}$ can be lifted to a self-map of $\mathcal{Y}^{\mathrm{C}_2}$ as well as $\mathcal{Y}^\mathbb{R}$. Further, the cofiber of the self-map of $\mathcal{Y}^\mathbb{R}$ is a realization of the subalgebra $\mathcal{A}^\mathbb{R} (1)$ of the $\mathbb{R}$-motivic Steenrod algebra. We also show that the $\mathrm{C}_2$-equivariant self-map is nilpotent on the geometric fixed-points of $\mathcal{Y}^{\mathrm{C}_2}$.
DOI : 10.4310/HHA.2022.v24.n1.a15
Classification : 14F42, 55Q51, 55Q91
Keywords: self-map, motivic homotopy, equivariant homotopy
@article{HHA_2022_24_1_a14,
     author = {Prasit Bhattacharya and Bertrand Guillou and Ang Li},
     title = {An $R$-motivic $v_1$-self-map of periodicity $1$},
     journal = {Homology, homotopy, and applications},
     pages = {299--324},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.4310/HHA.2022.v24.n1.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a15/}
}
TY  - JOUR
AU  - Prasit Bhattacharya
AU  - Bertrand Guillou
AU  - Ang Li
TI  - An $R$-motivic $v_1$-self-map of periodicity $1$
JO  - Homology, homotopy, and applications
PY  - 2022
SP  - 299
EP  - 324
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a15/
DO  - 10.4310/HHA.2022.v24.n1.a15
LA  - en
ID  - HHA_2022_24_1_a14
ER  - 
%0 Journal Article
%A Prasit Bhattacharya
%A Bertrand Guillou
%A Ang Li
%T An $R$-motivic $v_1$-self-map of periodicity $1$
%J Homology, homotopy, and applications
%D 2022
%P 299-324
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a15/
%R 10.4310/HHA.2022.v24.n1.a15
%G en
%F HHA_2022_24_1_a14
Prasit Bhattacharya; Bertrand Guillou; Ang Li. An $R$-motivic $v_1$-self-map of periodicity $1$. Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 299-324. doi : 10.4310/HHA.2022.v24.n1.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a15/

Cité par Sources :