Bousfield–Segal spaces
Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 217-243.

Voir la notice de l'article provenant de la source International Press of Boston

This paper is a study of Bousfield–Segal spaces, a notion introduced by Julie Bergner drawing on ideas about Eilenberg–Mac Lane objects due to Bousfield. In analogy to Rezk’s Segal spaces, they are defined in such a way that Bousfield–Segal spaces naturally come equipped with a homotopy-coherent fraction operation in place of a composition. In this paper we show that Bergner’s model structure for Bousfield–Segal spaces in fact can be obtained from the model structure for Segal spaces both as a localization and a colocalization. We thereby prove that Bousfield–Segal spaces really are Segal spaces, and that they characterize exactly those with invertible arrows. We note that the complete Bousfield–Segal spaces are precisely the homotopically constant Segal spaces, and deduce that the associated model structure yields a model for both $\infty$‑groupoids and Homotopy Type Theory.
DOI : 10.4310/HHA.2022.v24.n1.a12
Classification : 18G55, 55P20, 55P60
Keywords: homotopy, simplicial space, $\infty$-groupoid
@article{HHA_2022_24_1_a11,
     author = {Raffael Stenzel},
     title = {Bousfield{\textendash}Segal spaces},
     journal = {Homology, homotopy, and applications},
     pages = {217--243},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.4310/HHA.2022.v24.n1.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a12/}
}
TY  - JOUR
AU  - Raffael Stenzel
TI  - Bousfield–Segal spaces
JO  - Homology, homotopy, and applications
PY  - 2022
SP  - 217
EP  - 243
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a12/
DO  - 10.4310/HHA.2022.v24.n1.a12
LA  - en
ID  - HHA_2022_24_1_a11
ER  - 
%0 Journal Article
%A Raffael Stenzel
%T Bousfield–Segal spaces
%J Homology, homotopy, and applications
%D 2022
%P 217-243
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a12/
%R 10.4310/HHA.2022.v24.n1.a12
%G en
%F HHA_2022_24_1_a11
Raffael Stenzel. Bousfield–Segal spaces. Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 217-243. doi : 10.4310/HHA.2022.v24.n1.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a12/

Cité par Sources :