Realisability of the group of self-homotopy equivalences and local homotopy theory
Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 205-215.

Voir la notice de l'article provenant de la source International Press of Boston

We prove that any group $G$ occurs as the quotient $\mathcal{E}(X) / \mathcal{E}_\ast (X)$, where $\mathcal{E}(X)$ denotes the group of self-homotopy equivalence of a certain CW‑complex $X$ and $\mathcal{E}_\ast (X)$ denotes its subgroup of the elements inducing the identity on the homology groups.
DOI : 10.4310/HHA.2022.v24.n1.a11
Classification : 55P10
Keywords: Kahn’s realisability problem of groups, group of homotopy self-equivalences, Anick’s $R$-local homotopy theory
@article{HHA_2022_24_1_a10,
     author = {Mahmoud Benkhalifa},
     title = {Realisability of the group of self-homotopy equivalences and local homotopy theory},
     journal = {Homology, homotopy, and applications},
     pages = {205--215},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.4310/HHA.2022.v24.n1.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a11/}
}
TY  - JOUR
AU  - Mahmoud Benkhalifa
TI  - Realisability of the group of self-homotopy equivalences and local homotopy theory
JO  - Homology, homotopy, and applications
PY  - 2022
SP  - 205
EP  - 215
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a11/
DO  - 10.4310/HHA.2022.v24.n1.a11
LA  - en
ID  - HHA_2022_24_1_a10
ER  - 
%0 Journal Article
%A Mahmoud Benkhalifa
%T Realisability of the group of self-homotopy equivalences and local homotopy theory
%J Homology, homotopy, and applications
%D 2022
%P 205-215
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a11/
%R 10.4310/HHA.2022.v24.n1.a11
%G en
%F HHA_2022_24_1_a10
Mahmoud Benkhalifa. Realisability of the group of self-homotopy equivalences and local homotopy theory. Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 205-215. doi : 10.4310/HHA.2022.v24.n1.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a11/

Cité par Sources :