Hyperoctahedral homology for involutive algebras
Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 1-26.

Voir la notice de l'article provenant de la source International Press of Boston

Hyperoctahedral homology is the homology theory associated to the hyperoctahedral crossed simplicial group. It is defined for involutive algebras over a commutative ring using functor homology and the hyperoctahedral bar construction of Fiedorowicz. The main result of the paper proves that hyperoctahedral homology is related to equivariant stable homotopy theory: for a discrete group of odd order, the hyperoctahedral homology of the group algebra is isomorphic to the homology of the fixed points under the involution of an equivariant infinite loop space built from the classifying space of the group.
DOI : 10.4310/HHA.2022.v24.n1.a1
Classification : 13D03, 55N35, 55P47, 55U15
Keywords: hyperoctahedral homology, crossed simplicial group, functor homology, bar construction, equivariant infinite loop spaces
@article{HHA_2022_24_1_a0,
     author = {Daniel Graves},
     title = {Hyperoctahedral homology for involutive algebras},
     journal = {Homology, homotopy, and applications},
     pages = {1--26},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     doi = {10.4310/HHA.2022.v24.n1.a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a1/}
}
TY  - JOUR
AU  - Daniel Graves
TI  - Hyperoctahedral homology for involutive algebras
JO  - Homology, homotopy, and applications
PY  - 2022
SP  - 1
EP  - 26
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a1/
DO  - 10.4310/HHA.2022.v24.n1.a1
LA  - en
ID  - HHA_2022_24_1_a0
ER  - 
%0 Journal Article
%A Daniel Graves
%T Hyperoctahedral homology for involutive algebras
%J Homology, homotopy, and applications
%D 2022
%P 1-26
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a1/
%R 10.4310/HHA.2022.v24.n1.a1
%G en
%F HHA_2022_24_1_a0
Daniel Graves. Hyperoctahedral homology for involutive algebras. Homology, homotopy, and applications, Tome 24 (2022) no. 1, pp. 1-26. doi : 10.4310/HHA.2022.v24.n1.a1. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2022.v24.n1.a1/

Cité par Sources :