Monoids of self-maps of topological spherical space forms
Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 141-149.

Voir la notice de l'article provenant de la source International Press of Boston

A topological spherical space form is the quotient of a sphere by a free action of a finite group. In general, their homotopy types depend on specific actions of a group. We show that the monoid of homotopy classes of self-maps of a topological spherical space form is determined by the acting group and the dimension of the sphere, not depending on a specific action.
DOI : 10.4310/HHA.2021.v23.n2.a8
Classification : 55Q05
Keywords: monoid of self-maps, topological spherical space form, equivariant Hopf theorem
@article{HHA_2021_23_2_a7,
     author = {Daisuke Kishimoto and Nobuyuki Oda},
     title = {Monoids of self-maps of topological spherical space forms},
     journal = {Homology, homotopy, and applications},
     pages = {141--149},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n2.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a8/}
}
TY  - JOUR
AU  - Daisuke Kishimoto
AU  - Nobuyuki Oda
TI  - Monoids of self-maps of topological spherical space forms
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 141
EP  - 149
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a8/
DO  - 10.4310/HHA.2021.v23.n2.a8
LA  - en
ID  - HHA_2021_23_2_a7
ER  - 
%0 Journal Article
%A Daisuke Kishimoto
%A Nobuyuki Oda
%T Monoids of self-maps of topological spherical space forms
%J Homology, homotopy, and applications
%D 2021
%P 141-149
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a8/
%R 10.4310/HHA.2021.v23.n2.a8
%G en
%F HHA_2021_23_2_a7
Daisuke Kishimoto; Nobuyuki Oda. Monoids of self-maps of topological spherical space forms. Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 141-149. doi : 10.4310/HHA.2021.v23.n2.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a8/

Cité par Sources :