Magnitude homology, diagonality, and median spaces
Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 121-140.

Voir la notice de l'article provenant de la source International Press of Boston

We verify that the Künneth and Mayer–Vietoris formulae for magnitude homology of graphs, proven by Hepworth and Willerton, generalise naturally to the metric setting. Similarly, we extend the notion of diagonality of graphs to metric spaces, and verify its stability under products, retracts, and filtrations. As an application, we show that median spaces are diagonal; in particular any Menger convex median space has vanishing magnitude homology.
DOI : 10.4310/HHA.2021.v23.n2.a7
Classification : 55N35
Keywords: magnitude, metric space
@article{HHA_2021_23_2_a6,
     author = {R\'emi Bottinelli and Tom Kaiser},
     title = {Magnitude homology, diagonality, and median spaces},
     journal = {Homology, homotopy, and applications},
     pages = {121--140},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n2.a7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a7/}
}
TY  - JOUR
AU  - Rémi Bottinelli
AU  - Tom Kaiser
TI  - Magnitude homology, diagonality, and median spaces
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 121
EP  - 140
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a7/
DO  - 10.4310/HHA.2021.v23.n2.a7
LA  - en
ID  - HHA_2021_23_2_a6
ER  - 
%0 Journal Article
%A Rémi Bottinelli
%A Tom Kaiser
%T Magnitude homology, diagonality, and median spaces
%J Homology, homotopy, and applications
%D 2021
%P 121-140
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a7/
%R 10.4310/HHA.2021.v23.n2.a7
%G en
%F HHA_2021_23_2_a6
Rémi Bottinelli; Tom Kaiser. Magnitude homology, diagonality, and median spaces. Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 121-140. doi : 10.4310/HHA.2021.v23.n2.a7. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a7/

Cité par Sources :