The $\mathsf{P}^1_2$ margolis homology of connective topological modular forms
Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 379-402.

Voir la notice de l'article provenant de la source International Press of Boston

The element $\mathsf{P}^1_2$ of the $\operatorname{mod}2$ Steenrod algebra $\mathcal{A}$ has the property $(\mathsf{P}^1_2)^2 = 0$. This property allows one to view $\mathsf{P}^1_2$ as a differential on $H_\ast (X, \mathbb{F}_2)$ for any spectrum $X$. Homology with respect to this differential, $\mathcal{M} (X, \mathsf{P}^1_2)$, is called the $\mathsf{P}^1_2$ Margolis homology of $X$. In this paper we give a complete calculation of the $\mathsf{P}^1_2$ Margolis homology of the $2$-local spectrum of topological modular forms tmf and identify its $\mathbb{F}_2$ basis via an iterated algorithm. We apply the same techniques to calculate $\mathsf{P}^1_2$ Margolis homology for any smash power of tmf.
DOI : 10.4310/HHA.2021.v23.n2.a21
Classification : 55N35, 55P42, 55S10, 55S20
Keywords: Steenrod algebra, Margolis homology, topological modular forms
@article{HHA_2021_23_2_a20,
     author = {Prasit Bhattacharya and Irina Bobkova and Brian Thomas},
     title = {The $\mathsf{P}^1_2$ margolis homology of connective topological modular forms},
     journal = {Homology, homotopy, and applications},
     pages = {379--402},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n2.a21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a21/}
}
TY  - JOUR
AU  - Prasit Bhattacharya
AU  - Irina Bobkova
AU  - Brian Thomas
TI  - The $\mathsf{P}^1_2$ margolis homology of connective topological modular forms
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 379
EP  - 402
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a21/
DO  - 10.4310/HHA.2021.v23.n2.a21
LA  - en
ID  - HHA_2021_23_2_a20
ER  - 
%0 Journal Article
%A Prasit Bhattacharya
%A Irina Bobkova
%A Brian Thomas
%T The $\mathsf{P}^1_2$ margolis homology of connective topological modular forms
%J Homology, homotopy, and applications
%D 2021
%P 379-402
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a21/
%R 10.4310/HHA.2021.v23.n2.a21
%G en
%F HHA_2021_23_2_a20
Prasit Bhattacharya; Irina Bobkova; Brian Thomas. The $\mathsf{P}^1_2$ margolis homology of connective topological modular forms. Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 379-402. doi : 10.4310/HHA.2021.v23.n2.a21. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a21/

Cité par Sources :