Voir la notice de l'article provenant de la source International Press of Boston
@article{HHA_2021_23_2_a20, author = {Prasit Bhattacharya and Irina Bobkova and Brian Thomas}, title = {The $\mathsf{P}^1_2$ margolis homology of connective topological modular forms}, journal = {Homology, homotopy, and applications}, pages = {379--402}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2021}, doi = {10.4310/HHA.2021.v23.n2.a21}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a21/} }
TY - JOUR AU - Prasit Bhattacharya AU - Irina Bobkova AU - Brian Thomas TI - The $\mathsf{P}^1_2$ margolis homology of connective topological modular forms JO - Homology, homotopy, and applications PY - 2021 SP - 379 EP - 402 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a21/ DO - 10.4310/HHA.2021.v23.n2.a21 LA - en ID - HHA_2021_23_2_a20 ER -
%0 Journal Article %A Prasit Bhattacharya %A Irina Bobkova %A Brian Thomas %T The $\mathsf{P}^1_2$ margolis homology of connective topological modular forms %J Homology, homotopy, and applications %D 2021 %P 379-402 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a21/ %R 10.4310/HHA.2021.v23.n2.a21 %G en %F HHA_2021_23_2_a20
Prasit Bhattacharya; Irina Bobkova; Brian Thomas. The $\mathsf{P}^1_2$ margolis homology of connective topological modular forms. Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 379-402. doi : 10.4310/HHA.2021.v23.n2.a21. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a21/
Cité par Sources :