Homology of quantum linear groups
Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 9-31.

Voir la notice de l'article provenant de la source International Press of Boston

For every $n \geqslant 1$, we calculate the Hochschild homology of the quantum monoids $M_q (n)$, and the quantum groups $GL_q (n)$ and $SL_q (n)$ with coefficients in a $1$-dimensional module coming from a modular pair in involution.
DOI : 10.4310/HHA.2021.v23.n2.a2
Classification : 16E40, 17B37, 20G42
Keywords: quantum groups, Hochschild homology
@article{HHA_2021_23_2_a1,
     author = {A. Kaygun and S. S\"utl\"u},
     title = {Homology of quantum linear groups},
     journal = {Homology, homotopy, and applications},
     pages = {9--31},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n2.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a2/}
}
TY  - JOUR
AU  - A. Kaygun
AU  - S. Sütlü
TI  - Homology of quantum linear groups
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 9
EP  - 31
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a2/
DO  - 10.4310/HHA.2021.v23.n2.a2
LA  - en
ID  - HHA_2021_23_2_a1
ER  - 
%0 Journal Article
%A A. Kaygun
%A S. Sütlü
%T Homology of quantum linear groups
%J Homology, homotopy, and applications
%D 2021
%P 9-31
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a2/
%R 10.4310/HHA.2021.v23.n2.a2
%G en
%F HHA_2021_23_2_a1
A. Kaygun; S. Sütlü. Homology of quantum linear groups. Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 9-31. doi : 10.4310/HHA.2021.v23.n2.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a2/

Cité par Sources :