Left Bousfield localization and Eilenberg–Moore categories
Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 299-323.

Voir la notice de l'article provenant de la source International Press of Boston

We prove the equivalence of several hypotheses that have appeared recently in the literature for studying left Bousfield localization and algebras over a monad. We find conditions so that there is a model structure for local algebras, so that localization preserves algebras, and so that localization lifts to the level of algebras. We include examples coming from the theory of colored operads, and applications to spaces, spectra, and chain complexes.
DOI : 10.4310/HHA.2021.v23.n2.a16
Classification : 18C20, 18G55, 55P48, 55P60, 55U35
Keywords: monads, homotopy theory of algebras, left Bousfield localisation
@article{HHA_2021_23_2_a15,
     author = {Michael Batanin and David White},
     title = {Left {Bousfield} localization and {Eilenberg{\textendash}Moore} categories},
     journal = {Homology, homotopy, and applications},
     pages = {299--323},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n2.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a16/}
}
TY  - JOUR
AU  - Michael Batanin
AU  - David White
TI  - Left Bousfield localization and Eilenberg–Moore categories
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 299
EP  - 323
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a16/
DO  - 10.4310/HHA.2021.v23.n2.a16
LA  - en
ID  - HHA_2021_23_2_a15
ER  - 
%0 Journal Article
%A Michael Batanin
%A David White
%T Left Bousfield localization and Eilenberg–Moore categories
%J Homology, homotopy, and applications
%D 2021
%P 299-323
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a16/
%R 10.4310/HHA.2021.v23.n2.a16
%G en
%F HHA_2021_23_2_a15
Michael Batanin; David White. Left Bousfield localization and Eilenberg–Moore categories. Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 299-323. doi : 10.4310/HHA.2021.v23.n2.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a16/

Cité par Sources :