Gauge equivalence for complete $L_\infty$-algebras
Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 283-297.

Voir la notice de l'article provenant de la source International Press of Boston

We introduce a notion of left homotopy for Maurer–Cartan elements in $L_\infty$‑algebras and $A_\infty$‑algebras, and show that it corresponds to gauge equivalence in the differential graded case. From this we deduce a short formula for gauge equivalence, and provide an entirely homotopical proof to Schlessinger–Stasheff’s theorem. As an application, we answer a question of T. Voronov, proving a non-abelian Poincaré lemma for differential forms taking values in an $L_\infty$‑algebra.
DOI : 10.4310/HHA.2021.v23.n2.a15
Classification : 17B55, 18G55
Keywords: Maurer–Cartan element, differential graded Lie algebra, homotopy, model category, deformation
@article{HHA_2021_23_2_a14,
     author = {Ai Guan},
     title = {Gauge equivalence for complete $L_\infty$-algebras},
     journal = {Homology, homotopy, and applications},
     pages = {283--297},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n2.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a15/}
}
TY  - JOUR
AU  - Ai Guan
TI  - Gauge equivalence for complete $L_\infty$-algebras
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 283
EP  - 297
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a15/
DO  - 10.4310/HHA.2021.v23.n2.a15
LA  - en
ID  - HHA_2021_23_2_a14
ER  - 
%0 Journal Article
%A Ai Guan
%T Gauge equivalence for complete $L_\infty$-algebras
%J Homology, homotopy, and applications
%D 2021
%P 283-297
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a15/
%R 10.4310/HHA.2021.v23.n2.a15
%G en
%F HHA_2021_23_2_a14
Ai Guan. Gauge equivalence for complete $L_\infty$-algebras. Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 283-297. doi : 10.4310/HHA.2021.v23.n2.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a15/

Cité par Sources :