Local to global principles for generation time over commutative noetherian rings
Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 165-182.

Voir la notice de l'article provenant de la source International Press of Boston

In the derived category of modules over a commutative noetherian ring a complex $G$ is said to generate a complex $X$ if the latter can be obtained from the former by taking summands and finitely many cones. The number of cones required in this process is the generation time of $X$. In this paper we present some local to global type results for computing this invariant, and discuss applications.
DOI : 10.4310/HHA.2021.v23.n2.a10
Classification : 18E30, 13B30, 16E35
Keywords: local to global principle, generation time, level, coghost
@article{HHA_2021_23_2_a9,
     author = {Janina C. Letz},
     title = {Local to global principles for generation time over commutative noetherian rings},
     journal = {Homology, homotopy, and applications},
     pages = {165--182},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n2.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a10/}
}
TY  - JOUR
AU  - Janina C. Letz
TI  - Local to global principles for generation time over commutative noetherian rings
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 165
EP  - 182
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a10/
DO  - 10.4310/HHA.2021.v23.n2.a10
LA  - en
ID  - HHA_2021_23_2_a9
ER  - 
%0 Journal Article
%A Janina C. Letz
%T Local to global principles for generation time over commutative noetherian rings
%J Homology, homotopy, and applications
%D 2021
%P 165-182
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a10/
%R 10.4310/HHA.2021.v23.n2.a10
%G en
%F HHA_2021_23_2_a9
Janina C. Letz. Local to global principles for generation time over commutative noetherian rings. Homology, homotopy, and applications, Tome 23 (2021) no. 2, pp. 165-182. doi : 10.4310/HHA.2021.v23.n2.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n2.a10/

Cité par Sources :