Vector bundles and cohomotopies of $\operatorname{spin} 5$-manifolds
Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 143-158.

Voir la notice de l'article provenant de la source International Press of Boston

The purpose of this paper is two-fold: On the one side we would like to fill a gap on the classification of vector bundles over $5$‑manifolds. Therefore it will be necessary to study quaternionic line bundles over $5$‑manifolds which are in $\textrm{1-1}$ correspondence to elements in the cohomotopy group $\pi^4(M) = [M,S^4]$ of $M$. From results in [22, 24] this group fits into a short exact sequence, which splits into $H^4(M ; \mathbb{Z}) \oplus \mathbb{Z}_2$ if $M$ is spin. The second intent is to provide a bordism theoretic splitting map for this short exact sequence, which will lead to a $\mathbb{Z}_2$‑invariant for quaternionic line bundles. This invariant is related to the generalized Kervaire semi-characteristic of [23].
DOI : 10.4310/HHA.2021.v23.n1.a9
Classification : 55N22, 55R15, 55S37, 57R25
Keywords: framed bordism, classification of vector bundles, $5$-manifolds
@article{HHA_2021_23_1_a8,
     author = {Panagiotis Konstantis},
     title = {Vector bundles and cohomotopies of $\operatorname{spin} 5$-manifolds},
     journal = {Homology, homotopy, and applications},
     pages = {143--158},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n1.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a9/}
}
TY  - JOUR
AU  - Panagiotis Konstantis
TI  - Vector bundles and cohomotopies of $\operatorname{spin} 5$-manifolds
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 143
EP  - 158
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a9/
DO  - 10.4310/HHA.2021.v23.n1.a9
LA  - en
ID  - HHA_2021_23_1_a8
ER  - 
%0 Journal Article
%A Panagiotis Konstantis
%T Vector bundles and cohomotopies of $\operatorname{spin} 5$-manifolds
%J Homology, homotopy, and applications
%D 2021
%P 143-158
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a9/
%R 10.4310/HHA.2021.v23.n1.a9
%G en
%F HHA_2021_23_1_a8
Panagiotis Konstantis. Vector bundles and cohomotopies of $\operatorname{spin} 5$-manifolds. Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 143-158. doi : 10.4310/HHA.2021.v23.n1.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a9/

Cité par Sources :